Thin Cloud Removal Fusing Full Spectral and Spatial Features for Sentinel-2 Imagery

多光谱图像 遥感 计算机科学 光谱带 图像分辨率 人工智能 点云 计算机视觉 地质学
作者
Li Jun,Yuejie Zhang,Qinghong Sheng,Zhaocong Wu,Bo Wang,Zhongwen Hu,Guanting Shen,Michael Schmitt,Matthieu Molinier
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 8759-8775 被引量:10
标识
DOI:10.1109/jstars.2022.3211857
摘要

Multispectral remote sensing images are widely used for monitoring the globe. Although thin clouds can affect all optical bands, the influences of thin clouds differ with band wavelength. When processing multispectral bands at different resolutions, many methods only remove thin clouds in visible/near-infrared bands or rescale multiresolution bands to the same resolution and then process them together. The former cannot make full use of multispectral information, and in the latter, the rescaling process will introduce noise. In this article, a deep-learning-based thin cloud removal method that fuses full spectral and spatial features in original Sentinel-2 bands is proposed, named CR4S2. A multi-input and output architecture is designed for better fusing information in all bands and reconstructing the background at original resolutions. In addition, two parallel downsampling residual blocks are designed to transfer features extracted from different depths to the bottom of the network. Experiments were conducted on a new globally distributed Sentinel-2 thin cloud removal dataset called WHUS2-CRv. The results show that the best averaged peak signal-to-noise ratio, structural similarity index measurement, normalized root-mean-square error, and spectral angle mapper of the proposed method over 12 bands in all 20 testing images were 39.55, 0.9443, 0.0245, and 2.5676°, respectively. Compared with baseline methods, the proposed CR4S2 method can better restore not only the spatial features but also spectral features. This indicates that the proposed method is very promising for removing thin clouds in multispectral remote sensing images at different resolutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
man完成签到 ,获得积分10
1秒前
biofresh完成签到,获得积分10
3秒前
平凡完成签到,获得积分10
7秒前
8秒前
哈利波特完成签到,获得积分10
11秒前
菓小柒完成签到 ,获得积分10
11秒前
basil完成签到,获得积分10
12秒前
大橙子发布了新的文献求助10
12秒前
mammer应助超帅无色采纳,获得10
13秒前
helloworld完成签到,获得积分10
14秒前
海洋完成签到,获得积分10
14秒前
Hina完成签到,获得积分10
15秒前
ZH完成签到,获得积分10
18秒前
yyds完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
唯梦完成签到 ,获得积分10
22秒前
詹姆斯哈登完成签到,获得积分10
25秒前
李健应助名字不好起采纳,获得10
27秒前
万历完成签到,获得积分10
27秒前
27秒前
林卷卷完成签到,获得积分10
28秒前
大葱鸭发布了新的文献求助10
30秒前
31秒前
李健应助南山无梅落采纳,获得10
31秒前
35秒前
赘婿应助大橙子采纳,获得10
37秒前
44秒前
我是大学霸完成签到,获得积分10
45秒前
随风完成签到,获得积分0
45秒前
yi完成签到 ,获得积分10
46秒前
lin完成签到,获得积分10
47秒前
huahua完成签到 ,获得积分10
47秒前
大橙子发布了新的文献求助10
50秒前
小黑完成签到,获得积分10
53秒前
ZY完成签到 ,获得积分10
56秒前
阿士大夫完成签到,获得积分0
56秒前
chai完成签到,获得积分10
56秒前
GUO完成签到,获得积分10
57秒前
111完成签到 ,获得积分10
58秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022