Thin Cloud Removal Fusing Full Spectral and Spatial Features for Sentinel-2 Imagery

多光谱图像 遥感 计算机科学 光谱带 图像分辨率 人工智能 点云 计算机视觉 地质学
作者
Li Jun,Yuejie Zhang,Qinghong Sheng,Zhaocong Wu,Bo Wang,Zhongwen Hu,Guanting Shen,Michael Schmitt,Matthieu Molinier
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 8759-8775 被引量:10
标识
DOI:10.1109/jstars.2022.3211857
摘要

Multispectral remote sensing images are widely used for monitoring the globe. Although thin clouds can affect all optical bands, the influences of thin clouds differ with band wavelength. When processing multispectral bands at different resolutions, many methods only remove thin clouds in visible/near-infrared bands or rescale multiresolution bands to the same resolution and then process them together. The former cannot make full use of multispectral information, and in the latter, the rescaling process will introduce noise. In this article, a deep-learning-based thin cloud removal method that fuses full spectral and spatial features in original Sentinel-2 bands is proposed, named CR4S2. A multi-input and output architecture is designed for better fusing information in all bands and reconstructing the background at original resolutions. In addition, two parallel downsampling residual blocks are designed to transfer features extracted from different depths to the bottom of the network. Experiments were conducted on a new globally distributed Sentinel-2 thin cloud removal dataset called WHUS2-CRv. The results show that the best averaged peak signal-to-noise ratio, structural similarity index measurement, normalized root-mean-square error, and spectral angle mapper of the proposed method over 12 bands in all 20 testing images were 39.55, 0.9443, 0.0245, and 2.5676°, respectively. Compared with baseline methods, the proposed CR4S2 method can better restore not only the spatial features but also spectral features. This indicates that the proposed method is very promising for removing thin clouds in multispectral remote sensing images at different resolutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赘婿应助栗子采纳,获得10
1秒前
西西发布了新的文献求助10
1秒前
坚定的琦完成签到 ,获得积分10
2秒前
任性的咖啡完成签到,获得积分20
2秒前
Hello应助zhao采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
七日春信发布了新的文献求助10
7秒前
吴子宇发布了新的文献求助10
8秒前
journey完成签到 ,获得积分10
10秒前
13秒前
乖猫要努力应助潇湘雪月采纳,获得10
16秒前
一行发布了新的文献求助10
16秒前
storm完成签到,获得积分10
19秒前
HOPE完成签到,获得积分20
20秒前
Singularity应助Xiaoyang采纳,获得10
22秒前
ding应助快乐一江采纳,获得10
22秒前
23秒前
步一完成签到,获得积分10
24秒前
27秒前
情怀应助科研通管家采纳,获得10
27秒前
SYLH应助科研通管家采纳,获得10
27秒前
SYLH应助科研通管家采纳,获得10
28秒前
烟花应助科研通管家采纳,获得10
28秒前
在水一方应助科研通管家采纳,获得10
28秒前
dongjy应助科研通管家采纳,获得150
28秒前
Owen应助科研通管家采纳,获得10
28秒前
fd163c应助科研通管家采纳,获得10
28秒前
大模型应助科研通管家采纳,获得10
28秒前
SciGPT应助科研通管家采纳,获得10
28秒前
Owen应助科研通管家采纳,获得10
28秒前
28秒前
愉快的牛氓完成签到 ,获得积分10
30秒前
恋雅颖月应助潇湘雪月采纳,获得10
32秒前
34秒前
传奇3应助热情青亦采纳,获得10
35秒前
CodeCraft应助夕沫采纳,获得10
36秒前
江江发布了新的文献求助10
39秒前
斯文败类应助sirhai采纳,获得10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174