Thin Cloud Removal Fusing Full Spectral and Spatial Features for Sentinel-2 Imagery

多光谱图像 遥感 计算机科学 光谱带 图像分辨率 人工智能 点云 计算机视觉 地质学
作者
Li Jun,Yuejie Zhang,Qinghong Sheng,Zhaocong Wu,Bo Wang,Zhongwen Hu,Guanting Shen,Michael Schmitt,Matthieu Molinier
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 8759-8775 被引量:10
标识
DOI:10.1109/jstars.2022.3211857
摘要

Multispectral remote sensing images are widely used for monitoring the globe. Although thin clouds can affect all optical bands, the influences of thin clouds differ with band wavelength. When processing multispectral bands at different resolutions, many methods only remove thin clouds in visible/near-infrared bands or rescale multiresolution bands to the same resolution and then process them together. The former cannot make full use of multispectral information, and in the latter, the rescaling process will introduce noise. In this article, a deep-learning-based thin cloud removal method that fuses full spectral and spatial features in original Sentinel-2 bands is proposed, named CR4S2. A multi-input and output architecture is designed for better fusing information in all bands and reconstructing the background at original resolutions. In addition, two parallel downsampling residual blocks are designed to transfer features extracted from different depths to the bottom of the network. Experiments were conducted on a new globally distributed Sentinel-2 thin cloud removal dataset called WHUS2-CRv. The results show that the best averaged peak signal-to-noise ratio, structural similarity index measurement, normalized root-mean-square error, and spectral angle mapper of the proposed method over 12 bands in all 20 testing images were 39.55, 0.9443, 0.0245, and 2.5676°, respectively. Compared with baseline methods, the proposed CR4S2 method can better restore not only the spatial features but also spectral features. This indicates that the proposed method is very promising for removing thin clouds in multispectral remote sensing images at different resolutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
佳佳发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
高挑的寒松完成签到,获得积分10
3秒前
wcy发布了新的文献求助10
4秒前
4秒前
ljx完成签到 ,获得积分10
5秒前
whandzxl完成签到,获得积分10
5秒前
桐桐应助wen采纳,获得10
5秒前
Killua完成签到,获得积分10
6秒前
1234发布了新的文献求助10
6秒前
h3m完成签到 ,获得积分10
6秒前
小小发布了新的文献求助10
7秒前
老北京完成签到,获得积分10
7秒前
tfldog发布了新的文献求助10
7秒前
不1mo完成签到,获得积分10
7秒前
8秒前
儒雅大象发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
dreamlife完成签到,获得积分10
11秒前
永毅发布了新的文献求助10
11秒前
充电宝应助diorzhang采纳,获得10
12秒前
Jj发布了新的文献求助10
12秒前
大卫在分享应助白玫瑰采纳,获得20
13秒前
酷炫半蕾完成签到,获得积分20
13秒前
WEI完成签到,获得积分20
13秒前
14秒前
liangliang发布了新的文献求助10
16秒前
陈军应助lyn采纳,获得30
16秒前
李健的小迷弟应助南北采纳,获得10
16秒前
16秒前
酷炫半蕾发布了新的文献求助10
16秒前
17秒前
没有昵称完成签到,获得积分10
17秒前
斯文败类应助儒雅大象采纳,获得10
17秒前
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148361
求助须知:如何正确求助?哪些是违规求助? 2799495
关于积分的说明 7835018
捐赠科研通 2456710
什么是DOI,文献DOI怎么找? 1307424
科研通“疑难数据库(出版商)”最低求助积分说明 628154
版权声明 601655