已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Verification of intelligent scheduling based on deep reinforcement learning for distributed workshops via discrete event simulation

计算机科学 公平份额计划 两级调度 动态优先级调度 单调速率调度 正确性 分布式计算 流水车间调度 调度(生产过程) 抽奖日程安排 固定优先级先发制人调度 循环调度 离散事件仿真 最早截止时间优先安排 甘特图 实时计算 算法 模拟 工程类 操作系统 地铁列车时刻表 系统工程 运营管理
作者
S.L. Yang,J.Y. Wang,Lining Xin,Z.G. Xu
出处
期刊:Advances in Production Engineering & Management [Production Engineering Institute (PEI), Faculty of Mechanical Engineering]
卷期号:17 (4): 401-412 被引量:5
标识
DOI:10.14743/apem2022.4.444
摘要

Production scheduling, which directly influences the completion time and throughput of workshops, has received extensive research. However, due to the high cost of real-world production verification, most literature did not verify the optimized scheduling scheme in real-world workshops. This paper studied the verification of scheduling schemes and environments, using a discrete event simulation (DES) platform. The aim of this study is to provide an efficient way to verify the correctness of scheduling environments established by programming languages and scheduling results obtained by intelligent algorithms. The system architecture of scheduling verification based on DES is established. The modelling approach via DES is proposed by designing parametric workshop generation, flexible production control, and real-time data processing. The popular distributed permutation flowshop scheduling problem is selected as a case study, where the optimal scheduling scheme obtained by a deep reinforcement learning algorithm is fed into the production simulation model in Plant Simulation software. The experiment results show that the proposed scheduling verification approach can validate the scheduling scheme and environment effectively. The utilization and Gantt charts clearly show the performance of scheduling schemes. This work can help to verify the scheduling schemes and programmed scheduling environment efficiently without costly real-world validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助纯真忆安采纳,获得10
刚刚
1秒前
zbc发布了新的文献求助10
1秒前
石头完成签到 ,获得积分10
1秒前
天棱发布了新的文献求助10
4秒前
4秒前
6秒前
ding应助HanFeiZi采纳,获得10
7秒前
8秒前
华仔应助zbc采纳,获得10
8秒前
开朗活泼的大山完成签到 ,获得积分10
9秒前
9秒前
mo完成签到,获得积分10
10秒前
Yrs会更好完成签到 ,获得积分10
10秒前
jing发布了新的文献求助10
11秒前
orixero应助lvzhechen采纳,获得10
11秒前
标致谷菱完成签到,获得积分10
12秒前
纯真忆安发布了新的文献求助10
13秒前
lotus发布了新的文献求助10
14秒前
15秒前
16秒前
18秒前
19秒前
21秒前
沉静的万天完成签到 ,获得积分10
21秒前
英姑应助123采纳,获得10
21秒前
FashionBoy应助纯真忆安采纳,获得10
22秒前
xiaojiezhang发布了新的文献求助10
22秒前
111完成签到 ,获得积分10
24秒前
仲沉鱼发布了新的文献求助10
25秒前
25秒前
lvzhechen发布了新的文献求助10
25秒前
25秒前
26秒前
现代尔芙发布了新的文献求助10
29秒前
29秒前
30秒前
昊天锤完成签到,获得积分10
30秒前
小燕子发布了新的文献求助10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469657
求助须知:如何正确求助?哪些是违规求助? 4572650
关于积分的说明 14336604
捐赠科研通 4499505
什么是DOI,文献DOI怎么找? 2465100
邀请新用户注册赠送积分活动 1453653
关于科研通互助平台的介绍 1428141