Verification of intelligent scheduling based on deep reinforcement learning for distributed workshops via discrete event simulation

计算机科学 公平份额计划 两级调度 动态优先级调度 单调速率调度 正确性 分布式计算 流水车间调度 调度(生产过程) 抽奖日程安排 固定优先级先发制人调度 循环调度 离散事件仿真 最早截止时间优先安排 甘特图 实时计算 算法 模拟 工程类 操作系统 地铁列车时刻表 系统工程 运营管理
作者
S.L. Yang,J.Y. Wang,Lining Xin,Z.G. Xu
出处
期刊:Advances in Production Engineering & Management [Production Engineering Institute (PEI), Faculty of Mechanical Engineering]
卷期号:17 (4): 401-412 被引量:5
标识
DOI:10.14743/apem2022.4.444
摘要

Production scheduling, which directly influences the completion time and throughput of workshops, has received extensive research. However, due to the high cost of real-world production verification, most literature did not verify the optimized scheduling scheme in real-world workshops. This paper studied the verification of scheduling schemes and environments, using a discrete event simulation (DES) platform. The aim of this study is to provide an efficient way to verify the correctness of scheduling environments established by programming languages and scheduling results obtained by intelligent algorithms. The system architecture of scheduling verification based on DES is established. The modelling approach via DES is proposed by designing parametric workshop generation, flexible production control, and real-time data processing. The popular distributed permutation flowshop scheduling problem is selected as a case study, where the optimal scheduling scheme obtained by a deep reinforcement learning algorithm is fed into the production simulation model in Plant Simulation software. The experiment results show that the proposed scheduling verification approach can validate the scheduling scheme and environment effectively. The utilization and Gantt charts clearly show the performance of scheduling schemes. This work can help to verify the scheduling schemes and programmed scheduling environment efficiently without costly real-world validation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen发布了新的文献求助10
刚刚
茹茹发布了新的文献求助10
刚刚
xh96完成签到,获得积分10
刚刚
微笑雁风完成签到,获得积分20
1秒前
1秒前
1秒前
秦长春完成签到,获得积分20
1秒前
光电发布了新的文献求助10
2秒前
烟花应助张yang采纳,获得10
3秒前
3秒前
3秒前
3秒前
踏实十三完成签到,获得积分10
4秒前
超级翠应助wanghao采纳,获得10
4秒前
eraygt完成签到,获得积分10
4秒前
4秒前
认真的奇异果完成签到 ,获得积分10
4秒前
4秒前
小木关注了科研通微信公众号
4秒前
祺屿梦完成签到,获得积分10
5秒前
yangts2021发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
张伟发布了新的文献求助10
6秒前
6秒前
6秒前
CodeCraft应助杨媛采纳,获得10
7秒前
SciGPT应助liqianniu采纳,获得10
7秒前
8秒前
zzz发布了新的文献求助10
8秒前
DI完成签到,获得积分10
8秒前
罗莹完成签到,获得积分10
9秒前
情怀应助棒棒的红红采纳,获得10
9秒前
9秒前
serendipity发布了新的文献求助10
10秒前
cwy发布了新的文献求助10
10秒前
Novice6354完成签到 ,获得积分10
10秒前
大个应助单薄的夜阑采纳,获得30
10秒前
意未清完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482