Verification of intelligent scheduling based on deep reinforcement learning for distributed workshops via discrete event simulation

计算机科学 公平份额计划 两级调度 动态优先级调度 单调速率调度 正确性 分布式计算 流水车间调度 调度(生产过程) 抽奖日程安排 固定优先级先发制人调度 循环调度 离散事件仿真 最早截止时间优先安排 甘特图 实时计算 算法 模拟 工程类 操作系统 地铁列车时刻表 系统工程 运营管理
作者
S.L. Yang,J.Y. Wang,Lining Xin,Z.G. Xu
出处
期刊:Advances in Production Engineering & Management [Production Engineering Institute (PEI), Faculty of Mechanical Engineering]
卷期号:17 (4): 401-412 被引量:5
标识
DOI:10.14743/apem2022.4.444
摘要

Production scheduling, which directly influences the completion time and throughput of workshops, has received extensive research. However, due to the high cost of real-world production verification, most literature did not verify the optimized scheduling scheme in real-world workshops. This paper studied the verification of scheduling schemes and environments, using a discrete event simulation (DES) platform. The aim of this study is to provide an efficient way to verify the correctness of scheduling environments established by programming languages and scheduling results obtained by intelligent algorithms. The system architecture of scheduling verification based on DES is established. The modelling approach via DES is proposed by designing parametric workshop generation, flexible production control, and real-time data processing. The popular distributed permutation flowshop scheduling problem is selected as a case study, where the optimal scheduling scheme obtained by a deep reinforcement learning algorithm is fed into the production simulation model in Plant Simulation software. The experiment results show that the proposed scheduling verification approach can validate the scheduling scheme and environment effectively. The utilization and Gantt charts clearly show the performance of scheduling schemes. This work can help to verify the scheduling schemes and programmed scheduling environment efficiently without costly real-world validation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nwds发布了新的文献求助10
刚刚
刚刚
xiaoxiao关注了科研通微信公众号
刚刚
刚刚
bzlish发布了新的文献求助10
1秒前
汉堡包应助zzx采纳,获得10
1秒前
求助文献完成签到,获得积分20
2秒前
mark完成签到,获得积分10
2秒前
酷波er应助甜甜醉波采纳,获得10
3秒前
烟花应助陈志强采纳,获得10
3秒前
3秒前
洪晖阳完成签到,获得积分10
4秒前
莫筱铭发布了新的文献求助10
4秒前
momeak发布了新的文献求助10
5秒前
Akim应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
123应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
汤飞飞完成签到,获得积分10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
asdfzxcv应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
123应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
欢呼乘风应助科研通管家采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
123应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
7秒前
wocao完成签到 ,获得积分10
7秒前
希望天下0贩的0应助guozi采纳,获得10
7秒前
8秒前
zhonglv7应助xuan采纳,获得10
9秒前
10秒前
rauldai完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646573
求助须知:如何正确求助?哪些是违规求助? 4771751
关于积分的说明 15035677
捐赠科研通 4805321
什么是DOI,文献DOI怎么找? 2569625
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485858