Verification of intelligent scheduling based on deep reinforcement learning for distributed workshops via discrete event simulation

计算机科学 公平份额计划 两级调度 动态优先级调度 单调速率调度 正确性 分布式计算 流水车间调度 调度(生产过程) 抽奖日程安排 固定优先级先发制人调度 循环调度 离散事件仿真 最早截止时间优先安排 甘特图 实时计算 算法 模拟 工程类 操作系统 地铁列车时刻表 运营管理 系统工程
作者
S.L. Yang,J.Y. Wang,Lining Xin,Z.G. Xu
出处
期刊:Advances in Production Engineering & Management [Production Engineering Institute (PEI), Faculty of Mechanical Engineering]
卷期号:17 (4): 401-412 被引量:5
标识
DOI:10.14743/apem2022.4.444
摘要

Production scheduling, which directly influences the completion time and throughput of workshops, has received extensive research. However, due to the high cost of real-world production verification, most literature did not verify the optimized scheduling scheme in real-world workshops. This paper studied the verification of scheduling schemes and environments, using a discrete event simulation (DES) platform. The aim of this study is to provide an efficient way to verify the correctness of scheduling environments established by programming languages and scheduling results obtained by intelligent algorithms. The system architecture of scheduling verification based on DES is established. The modelling approach via DES is proposed by designing parametric workshop generation, flexible production control, and real-time data processing. The popular distributed permutation flowshop scheduling problem is selected as a case study, where the optimal scheduling scheme obtained by a deep reinforcement learning algorithm is fed into the production simulation model in Plant Simulation software. The experiment results show that the proposed scheduling verification approach can validate the scheduling scheme and environment effectively. The utilization and Gantt charts clearly show the performance of scheduling schemes. This work can help to verify the scheduling schemes and programmed scheduling environment efficiently without costly real-world validation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Xiaoxiao应助薛定谔的猫采纳,获得30
1秒前
鲸鱼发布了新的文献求助10
1秒前
1秒前
Triumph发布了新的文献求助10
2秒前
阳yang发布了新的文献求助10
2秒前
科研通AI5应助ycw992847127采纳,获得10
2秒前
3秒前
3秒前
沐沐完成签到,获得积分10
3秒前
稽TR完成签到,获得积分10
4秒前
zzz完成签到,获得积分10
5秒前
英姑应助无恙29采纳,获得30
5秒前
5秒前
归尘发布了新的文献求助10
6秒前
crazyant发布了新的文献求助10
6秒前
沐沐发布了新的文献求助10
7秒前
7秒前
wangsai完成签到,获得积分10
8秒前
kk完成签到,获得积分10
8秒前
干净以珊发布了新的文献求助10
8秒前
动听的觅波完成签到,获得积分10
9秒前
9秒前
9秒前
nenoaowu发布了新的文献求助10
10秒前
11秒前
12秒前
科研通AI5应助cqy采纳,获得10
13秒前
13秒前
科研通AI5应助平安喜乐采纳,获得10
13秒前
852应助干净以珊采纳,获得10
14秒前
14秒前
二三发布了新的文献求助10
14秒前
15秒前
李健的小迷弟应助绝望了采纳,获得10
15秒前
16秒前
文艺涵菡发布了新的文献求助10
16秒前
16秒前
叫啥呢发布了新的文献求助10
19秒前
zjq发布了新的文献求助10
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Population Genetics 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3496071
求助须知:如何正确求助?哪些是违规求助? 3081040
关于积分的说明 9165600
捐赠科研通 2774001
什么是DOI,文献DOI怎么找? 1522263
邀请新用户注册赠送积分活动 705824
科研通“疑难数据库(出版商)”最低求助积分说明 703085