A literature survey of MR-based brain tumor segmentation with missing modalities

计算机科学 模式 分割 模态(人机交互) 人工智能 缺少数据 特征(语言学) 医学影像学 图像分割 医学物理学 机器学习 医学 社会科学 语言学 哲学 社会学
作者
Tongxue Zhou,Su Ruan,Haigen Hu
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:104: 102167-102167 被引量:22
标识
DOI:10.1016/j.compmedimag.2022.102167
摘要

Multimodal MR brain tumor segmentation is one of the hottest issues in the community of medical image processing. However, acquiring the complete set of MR modalities is not always possible in clinical practice, due to the acquisition protocols, image corruption, scanner availability, scanning cost or allergies to certain contrast materials. The missing information can cause some restraints to brain tumor diagnosis, monitoring, treatment planning and prognosis. Thus, it is highly desirable to develop brain tumor segmentation methods to address the missing modalities problem. Based on the recent advancements, in this review, we provide a detailed analysis of the missing modality issue in MR-based brain tumor segmentation. First, we briefly introduce the biomedical background concerning brain tumor, MR imaging techniques, and the current challenges in brain tumor segmentation. Then, we provide a taxonomy of the state-of-the-art methods with five categories, namely, image synthesis-based method, latent feature space-based model, multi-source correlation-based method, knowledge distillation-based method, and domain adaptation-based method. In addition, the principles, architectures, benefits and limitations are elaborated in each method. Following that, the corresponding datasets and widely used evaluation metrics are described. Finally, we analyze the current challenges and provide a prospect for future development trends. This review aims to provide readers with a thorough knowledge of the recent contributions in the field of brain tumor segmentation with missing modalities and suggest potential future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
典雅的俊驰应助xun采纳,获得30
刚刚
开放的柚子完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
可靠远山关注了科研通微信公众号
2秒前
2秒前
HopeStar完成签到,获得积分10
2秒前
3秒前
失眠的霸完成签到,获得积分10
4秒前
RHLVE应助戚薇采纳,获得20
4秒前
4秒前
wjx发布了新的文献求助10
4秒前
shuangcheng发布了新的文献求助10
4秒前
charm12发布了新的文献求助10
4秒前
研友_VZG7GZ应助fyfly采纳,获得10
5秒前
5秒前
全糖完成签到,获得积分10
5秒前
吴志新完成签到,获得积分10
5秒前
心旷神怡发布了新的文献求助10
5秒前
Jiaocm完成签到,获得积分10
6秒前
海的蓝色是水完成签到,获得积分20
6秒前
天天快乐应助明天过后采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
所所应助吴真好采纳,获得10
8秒前
乐观小之应助wogua采纳,获得10
8秒前
隐形曼青应助wogua采纳,获得10
8秒前
9秒前
清脆惜寒应助Wang采纳,获得30
9秒前
标致乐双发布了新的文献求助10
10秒前
Catalina_S应助太阳采纳,获得20
10秒前
华仔应助刘桑桑采纳,获得10
10秒前
11秒前
12秒前
深情安青应助123456采纳,获得10
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646