亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A literature survey of MR-based brain tumor segmentation with missing modalities

计算机科学 模式 分割 模态(人机交互) 人工智能 缺少数据 特征(语言学) 医学影像学 图像分割 医学物理学 机器学习 医学 社会科学 语言学 哲学 社会学
作者
Tongxue Zhou,Su Ruan,Haigen Hu
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:104: 102167-102167 被引量:22
标识
DOI:10.1016/j.compmedimag.2022.102167
摘要

Multimodal MR brain tumor segmentation is one of the hottest issues in the community of medical image processing. However, acquiring the complete set of MR modalities is not always possible in clinical practice, due to the acquisition protocols, image corruption, scanner availability, scanning cost or allergies to certain contrast materials. The missing information can cause some restraints to brain tumor diagnosis, monitoring, treatment planning and prognosis. Thus, it is highly desirable to develop brain tumor segmentation methods to address the missing modalities problem. Based on the recent advancements, in this review, we provide a detailed analysis of the missing modality issue in MR-based brain tumor segmentation. First, we briefly introduce the biomedical background concerning brain tumor, MR imaging techniques, and the current challenges in brain tumor segmentation. Then, we provide a taxonomy of the state-of-the-art methods with five categories, namely, image synthesis-based method, latent feature space-based model, multi-source correlation-based method, knowledge distillation-based method, and domain adaptation-based method. In addition, the principles, architectures, benefits and limitations are elaborated in each method. Following that, the corresponding datasets and widely used evaluation metrics are described. Finally, we analyze the current challenges and provide a prospect for future development trends. This review aims to provide readers with a thorough knowledge of the recent contributions in the field of brain tumor segmentation with missing modalities and suggest potential future directions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
打打应助努力学习的小福采纳,获得10
7秒前
Cmqq发布了新的文献求助10
8秒前
18秒前
21秒前
29秒前
haan完成签到,获得积分10
31秒前
haan发布了新的文献求助10
33秒前
义气幼珊完成签到 ,获得积分10
35秒前
36秒前
柳贯一完成签到,获得积分10
38秒前
爆米花应助haan采纳,获得10
38秒前
充电宝应助Cmqq采纳,获得10
41秒前
优美紫槐应助健康的远航采纳,获得10
43秒前
有风的地方完成签到 ,获得积分10
52秒前
YujieJin完成签到 ,获得积分10
55秒前
56秒前
1分钟前
1分钟前
1分钟前
1分钟前
Cmqq发布了新的文献求助10
1分钟前
wrry完成签到,获得积分10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
陶醉的烤鸡完成签到 ,获得积分10
1分钟前
丘比特应助Cmqq采纳,获得10
1分钟前
1分钟前
1分钟前
小年小少发布了新的文献求助10
1分钟前
Dr. Chen发布了新的文献求助10
1分钟前
令狐冲完成签到 ,获得积分10
1分钟前
Cassiel完成签到,获得积分10
1分钟前
hahahan完成签到 ,获得积分10
1分钟前
上官若男应助Passion采纳,获得10
1分钟前
1分钟前
lll完成签到 ,获得积分10
2分钟前
wrry发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599747
求助须知:如何正确求助?哪些是违规求助? 4685478
关于积分的说明 14838528
捐赠科研通 4670257
什么是DOI,文献DOI怎么找? 2538191
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898