Understanding the Impact of Microstructures on Reconstitution and Drying Kinetics of Lyophilized Cake Using X-ray Microscopy and Image-Based Simulation

微观结构 冷冻干燥 传质 扩散 动力学 曲折 材料科学 化学工程 润湿 显微镜 化学 色谱法 多孔性 复合材料 热力学 光学 物理 工程类 量子力学
作者
Yu Pu,Lisa Ma,Barton Dear,Aiden Zhu,Jianmin Li,Shawn Zhang,Weixian Shi
出处
期刊:Journal of Pharmaceutical Sciences [Elsevier]
卷期号:112 (6): 1625-1634 被引量:7
标识
DOI:10.1016/j.xphs.2023.01.002
摘要

The drying time of lyophilization and resultant cake microstructure are dependent on each other as water and solvent leave a lyophilized cake. The drying rate affects the size, distribution, and tortuosity of the pores as these macropores evolve during the primary drying phase, which in return impact the further removal of water and solvent from the cake throughout the drying period. This interplay results in a microstructure that determines the reconstitution time for a given formulation. The current study employs advanced X-ray Microscopy (XRM) coupled with mathematical models to correlate the microstructure with the drying kinetics and the reconstitution time. The normalized diffusion coefficients, derived from the reconstructed 3D microstructure of the cake, correlate with the solid content of the pre-lyophilization solution and agree with the mass transfer coefficients from a semi-empirical drying model built with lyophilization process data. Specifically, a solution with less solid content leads to a lyophilized cake with larger pores, thinner walls, and a greater pore volume compared to a solution with more solid content. Consequently, models from the microstructure and drying experiments reveals faster mass transfer independently. While the mass transfer models from the cake structure and the lyophilization process data accurately represents the drying kinetics, both models are inadequate to describe the reconstitution process due to the significant impact from formulation ingredients that alter the mass transfer mechanism via solubility and wettability. In summary, X-ray microscopy imaging and mathematical models are powerful tools that provide insights into the lyophilization process from a new angle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
starr完成签到,获得积分20
1秒前
情怀应助Jackking采纳,获得10
1秒前
kkk完成签到,获得积分10
1秒前
南北发布了新的文献求助10
1秒前
科研小满发布了新的文献求助10
2秒前
慕青应助daqisong采纳,获得10
2秒前
swan完成签到 ,获得积分20
2秒前
2秒前
绮罗完成签到 ,获得积分10
2秒前
Mic应助野性的曼香采纳,获得10
3秒前
samurai完成签到,获得积分10
3秒前
3秒前
丘比特应助dbq采纳,获得10
3秒前
ding应助dbq采纳,获得10
3秒前
3秒前
槑槑完成签到,获得积分10
3秒前
3秒前
Mlwwq发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
MathCheck发布了新的文献求助10
4秒前
Flipped完成签到,获得积分10
4秒前
温木成林完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
DIAPTERA完成签到,获得积分10
6秒前
脑洞疼应助JamesYang采纳,获得10
7秒前
害羞耷发布了新的文献求助10
7秒前
EasonZ发布了新的文献求助10
7秒前
鸡毛完成签到,获得积分10
8秒前
谢琳发布了新的文献求助10
8秒前
morning发布了新的文献求助10
8秒前
8秒前
weirdo发布了新的文献求助10
8秒前
9秒前
9秒前
陈云完成签到,获得积分10
10秒前
10秒前
cchh完成签到,获得积分20
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728114
求助须知:如何正确求助?哪些是违规求助? 5311529
关于积分的说明 15313202
捐赠科研通 4875379
什么是DOI,文献DOI怎么找? 2618794
邀请新用户注册赠送积分活动 1568399
关于科研通互助平台的介绍 1525035