Spatial and temporal saliency based four-stream network with multi-task learning for action recognition

计算机科学 任务(项目管理) 人工智能 RGB颜色模型 光流 模式识别(心理学) 空间分析 计算机视觉 图像(数学) 遥感 地质学 经济 管理
作者
Ming Zong,Ruili Wang,Yujun Ma,Wanting Ji
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:132: 109884-109884 被引量:18
标识
DOI:10.1016/j.asoc.2022.109884
摘要

Action recognition is a challenging video understanding task for the following two reasons: (i) the complex video background impairs the recognition of desirable actions, and (ii) the fusion of spatial information and temporal information. In this paper, we proposed a novel spatial and temporal saliency based four-stream network with multi-task learning. The proposed model comprises four streams: an appearance stream (i.e. a spatial stream), a motion stream (i.e. a temporal stream), a novel spatial saliency stream and a novel temporal saliency stream. The spatial stream captures the global spatial information from videos using the sampled RGB video frames as the input. The temporal stream captures the global motion information of each pixel using the sampled stacked optical flow frames as the input. The novel spatial saliency stream is used to acquire spatial saliency information from spatial saliency frames, and the novel temporal saliency stream is used to acquire temporal saliency information from temporal saliency frames. In addition, based on the four streams, multi-task learning based LSTM is adopted, which can share the complementary knowledge between different CNN features extracted from different stacked frames. The multi-task learning based LSTM can capture long-term dependency relationships between the consecutive frames over temporal evolution, which take full advantage of CNNs and LSTMs. We conduct experiments on three popular video action recognition datasets, including the UCF101 action dataset, the HMDB51 action dataset and the large-scale Kinetics action dataset, to verify the effectiveness of the proposed network, and the results demonstrate that the proposed network achieves better performance than the state-of-the-art methods on these action recognition datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
大福发布了新的文献求助10
1秒前
1秒前
正直的梦龙完成签到,获得积分10
1秒前
兴奋飞荷发布了新的文献求助10
1秒前
3秒前
cruise发布了新的文献求助10
3秒前
耶椰发布了新的文献求助10
5秒前
6秒前
冒泡的可乐完成签到,获得积分10
7秒前
MMM发布了新的文献求助10
8秒前
猪猪侠完成签到,获得积分10
8秒前
ZSHAN完成签到,获得积分10
9秒前
cao完成签到,获得积分20
9秒前
猴王发布了新的文献求助10
9秒前
10秒前
大福完成签到,获得积分10
10秒前
xiaotaiyang发布了新的文献求助10
10秒前
10秒前
风中垣完成签到,获得积分10
11秒前
炎星语发布了新的文献求助10
11秒前
小羊先生完成签到 ,获得积分10
12秒前
12秒前
14秒前
英姑应助BASS采纳,获得10
14秒前
15秒前
15秒前
xwtx发布了新的文献求助10
16秒前
16秒前
16秒前
小鼠星球完成签到,获得积分10
17秒前
打打应助兔BF采纳,获得10
17秒前
葉芊羽发布了新的文献求助10
18秒前
段盼兰发布了新的文献求助200
19秒前
LFY完成签到 ,获得积分10
20秒前
cao发布了新的文献求助10
20秒前
英姑应助老牛采纳,获得10
20秒前
gyh发布了新的文献求助10
21秒前
小冰完成签到,获得积分20
21秒前
高分求助中
Востребованный временем 2500
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422541
求助须知:如何正确求助?哪些是违规求助? 3022759
关于积分的说明 8902632
捐赠科研通 2710279
什么是DOI,文献DOI怎么找? 1486364
科研通“疑难数据库(出版商)”最低求助积分说明 687038
邀请新用户注册赠送积分活动 682261