已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatial and temporal saliency based four-stream network with multi-task learning for action recognition

计算机科学 任务(项目管理) 人工智能 RGB颜色模型 光流 模式识别(心理学) 空间分析 计算机视觉 图像(数学) 遥感 地质学 经济 管理
作者
Ming Zong,Ruili Wang,Yujun Ma,Wanting Ji
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:132: 109884-109884 被引量:26
标识
DOI:10.1016/j.asoc.2022.109884
摘要

Action recognition is a challenging video understanding task for the following two reasons: (i) the complex video background impairs the recognition of desirable actions, and (ii) the fusion of spatial information and temporal information. In this paper, we proposed a novel spatial and temporal saliency based four-stream network with multi-task learning. The proposed model comprises four streams: an appearance stream (i.e. a spatial stream), a motion stream (i.e. a temporal stream), a novel spatial saliency stream and a novel temporal saliency stream. The spatial stream captures the global spatial information from videos using the sampled RGB video frames as the input. The temporal stream captures the global motion information of each pixel using the sampled stacked optical flow frames as the input. The novel spatial saliency stream is used to acquire spatial saliency information from spatial saliency frames, and the novel temporal saliency stream is used to acquire temporal saliency information from temporal saliency frames. In addition, based on the four streams, multi-task learning based LSTM is adopted, which can share the complementary knowledge between different CNN features extracted from different stacked frames. The multi-task learning based LSTM can capture long-term dependency relationships between the consecutive frames over temporal evolution, which take full advantage of CNNs and LSTMs. We conduct experiments on three popular video action recognition datasets, including the UCF101 action dataset, the HMDB51 action dataset and the large-scale Kinetics action dataset, to verify the effectiveness of the proposed network, and the results demonstrate that the proposed network achieves better performance than the state-of-the-art methods on these action recognition datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BEYOND啊完成签到 ,获得积分10
1秒前
zzx发布了新的文献求助10
1秒前
zzd完成签到,获得积分10
3秒前
anuk完成签到 ,获得积分10
3秒前
李健的小迷弟应助123采纳,获得10
6秒前
tt关闭了tt文献求助
7秒前
MDW完成签到,获得积分10
8秒前
9秒前
大个应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得20
12秒前
eric888应助科研通管家采纳,获得30
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
14秒前
Nemo发布了新的文献求助10
14秒前
林桉应助魏一鸣采纳,获得10
14秒前
15秒前
16秒前
HESOYAM发布了新的文献求助10
16秒前
123发布了新的文献求助10
17秒前
wssamuel完成签到 ,获得积分10
17秒前
房房不慌完成签到 ,获得积分10
17秒前
17秒前
meng发布了新的文献求助10
19秒前
Nicole完成签到 ,获得积分10
19秒前
22秒前
_Charmo完成签到,获得积分10
22秒前
21发布了新的文献求助10
23秒前
陈海伦完成签到 ,获得积分10
24秒前
24秒前
郑总完成签到 ,获得积分10
25秒前
白鹿丸发布了新的文献求助10
26秒前
Jasper应助TiAmo采纳,获得10
26秒前
虚心的绝施完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5076451
求助须知:如何正确求助?哪些是违规求助? 4295893
关于积分的说明 13386085
捐赠科研通 4117901
什么是DOI,文献DOI怎么找? 2255021
邀请新用户注册赠送积分活动 1259552
关于科研通互助平台的介绍 1192469