Designing a new bell-type primary air nozzle for large-scale circulating fluidized bed boilers

喷嘴 压力降 阀体孔板 机械 计算流体力学 流化床燃烧 锅炉(水暖) 环境科学 孔板 机械工程 核工程 材料科学 流化床 工程类 废物管理 物理
作者
Mustafa Metin Çam,Hakan Serhad Soyhan,Mansour Al Qubeissi,Cenk Çelik
出处
期刊:Fuel [Elsevier]
卷期号:335: 127065-127065 被引量:3
标识
DOI:10.1016/j.fuel.2022.127065
摘要

The design of energy efficient engineering systems is crucial for sustainable operation when economic and environmental consequences are considered. Circulating Fluidized Bed (CFB) boilers, which are among the major contributors to world electricity production, are still increasing in numbers and unit sizes. Primary air nozzles are key components of CFB boilers that may decrease energy consumption and increase energy efficiency, and they need to be carefully designed. There are certain types of nozzles commonly used in the air distribution grate, but even minor design improvements on the nozzle can significantly decrease the pressure loss. This work is about optimizing the bell-type primary air nozzle used in the Turkish lignite-fired ÇAN Thermal Power Plant (CTPP), which has two 160 MWe CFB boilers, through computational fluid dynamics (CFD). Initially, the bell-type nozzle was designed newly by changing the inner head holes geometry. After that, the nozzle geometry was optimized by changing the orifice size and angle to decrease the pressure drop, increase the orifice velocity outlet, and flow uniformity through CFD simulations. With the optimum nozzle geometry, the velocity at the outlet orifices was increased, and a decrease of 2.86 kPa was achieved in the total pressure loss. Furthermore, when the nozzle orifices were designed downwardly with an angle of 105°, pressure drop across the nozzle decreased by 7.6 %, and the uniformity index increased by 2 % at the outlet orifices. Using the bell-type primary air nozzle, which is newly designed, in the CTPP boiler not only will save 2.26 GWh/year of energy consumption but also minimize the backflow risk in the boiler operation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
智慧发布了新的文献求助30
1秒前
DTS发布了新的文献求助10
2秒前
YI_JIA_YI完成签到,获得积分10
2秒前
小痞子完成签到 ,获得积分10
2秒前
苗灵雁完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
善学以致用应助超级的鞅采纳,获得10
3秒前
猪猪hero应助elang采纳,获得10
4秒前
weiyi发布了新的文献求助10
5秒前
佩琪完成签到,获得积分10
5秒前
包容秋珊发布了新的文献求助10
5秒前
缥缈的涵菡完成签到 ,获得积分10
6秒前
冷酷的溜溜梅完成签到 ,获得积分10
6秒前
7秒前
kaikai完成签到,获得积分10
7秒前
鱼鱼鱼发布了新的文献求助10
7秒前
带善人完成签到,获得积分10
7秒前
8秒前
8秒前
科研通AI6应助zhangyulong采纳,获得10
8秒前
爆爆发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
小雨堂完成签到,获得积分10
10秒前
研友_VZG7GZ应助萝卜采纳,获得10
11秒前
11秒前
11秒前
hu123完成签到,获得积分10
12秒前
领导范儿应助DTS采纳,获得10
12秒前
12秒前
moyu37完成签到,获得积分10
12秒前
12秒前
13秒前
李xxxx发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802