A WiFi Fingerprint Augmentation Method for 3-D Crowdsourced Indoor Positioning Systems

RSS 计算机科学 指纹(计算) 众包 实时计算 指纹识别 数据挖掘 人工智能 万维网
作者
Yinhuan Dong,Tughrul Arslan,Yunjie Yang,Yingda Ma
标识
DOI:10.1109/ipin54987.2022.9918117
摘要

WiFi received signal strength (RSS)-based finger-printing has attracted much attention in indoor positioning in the past decade. One WiFi fingerprint comprises multiple RSS values annotated with the location (reference point) where the signals are obtained. The positioning accuracy of WiFi RSS fingerprinting-based indoor positioning systems is highly reliant on the data volume of the observed signals. However, taking such data in a large complex indoor area is usually time-consuming and labor-intensive. In recent years, crowdsourcing approaches have been proposed to collect WiFi data and record the location by utilizing the trajectories of common users to reduce the burden of constructing the database. Nevertheless, crowdsourced data is usually sensitive to crowd density. The data coverage is usually not enough to cover the entire targeted environment to provide good positioning accuracy, particularly at the beginning stage of constructing a database. Besides, it is also expected that some regions do not have enough fingerprints to provide good positioning performance since they do not have as many visitors as others. Therefore, this paper proposes a WiFi fingerprint augmentation method to generate more fingerprints by predicting RSS values on unsurveyed locations through a multivariate Gaussian process regression (MGPR) model. Evaluations are conducted on an open-source crowdsourced WiFi fingerprint dataset collected in an actual multi-floor university building. The experiment results show that the proposed WiFi fingerprint augmentation method can enhance the global data coverage (considering the entire building) to reduce the positioning error by 5% to 20%. Also, the proposed method can sharply reduce the positioning error in some indoor regions by improving local data density (considering a 2D region on a certain floor).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你说的都对完成签到,获得积分10
刚刚
彤光赫显完成签到 ,获得积分10
11秒前
林夕完成签到 ,获得积分10
11秒前
xiax03完成签到,获得积分10
14秒前
clm完成签到 ,获得积分10
19秒前
39秒前
风趣的冬卉完成签到 ,获得积分10
42秒前
baixun发布了新的文献求助10
43秒前
Zheng完成签到 ,获得积分10
47秒前
樊伟诚发布了新的文献求助10
56秒前
baixun完成签到,获得积分10
1分钟前
liguanyu1078完成签到,获得积分10
1分钟前
卡卡罗特先森完成签到 ,获得积分10
1分钟前
三十四画生完成签到 ,获得积分10
1分钟前
大力的诗蕾完成签到 ,获得积分10
1分钟前
排骨炖豆角完成签到 ,获得积分10
1分钟前
科研佟完成签到 ,获得积分10
1分钟前
czj完成签到 ,获得积分10
1分钟前
C2750完成签到,获得积分10
1分钟前
mark33442完成签到,获得积分10
1分钟前
年轻的醉冬完成签到 ,获得积分10
1分钟前
1分钟前
闪闪灯泡完成签到 ,获得积分10
1分钟前
标致诗双发布了新的文献求助10
1分钟前
粥粥完成签到 ,获得积分10
1分钟前
Microgan完成签到,获得积分10
1分钟前
没用的三轮完成签到,获得积分10
1分钟前
000完成签到 ,获得积分10
1分钟前
2分钟前
陶醉大侠发布了新的文献求助10
2分钟前
科研通AI2S应助000采纳,获得10
2分钟前
绵羊完成签到,获得积分10
2分钟前
甜蜜的代容完成签到,获得积分10
2分钟前
Clover完成签到 ,获得积分10
2分钟前
2分钟前
淡定的含蕊完成签到 ,获得积分10
2分钟前
标致诗双完成签到,获得积分10
2分钟前
九月完成签到 ,获得积分10
2分钟前
kirisaki完成签到 ,获得积分10
2分钟前
蓝意完成签到,获得积分0
2分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234715
求助须知:如何正确求助?哪些是违规求助? 2880925
关于积分的说明 8217427
捐赠科研通 2548592
什么是DOI,文献DOI怎么找? 1377856
科研通“疑难数据库(出版商)”最低求助积分说明 648057
邀请新用户注册赠送积分活动 623416