An untrained deep learning method for reconstructing dynamic MR images from accelerated model‐based data

一致相关系数 正规化(语言学) 相似性(几何) 一致性 相关系数 人工神经网络 数学 模式识别(心理学) 人工智能 算法 提前停车 相关性 计算机科学 核磁共振 核医学 物理 统计 图像(数学) 几何学 医学 生物 生物信息学
作者
Slavkova, Kalina P.,DiCarlo, Julie C.,Wadhwa, Viraj,Wu, Chengyue,Virostko, John,Kumar, Sidharth,Yankeelov, Thomas E.,Tamir, Jonathan I.
出处
期刊:Magnetic Resonance in Medicine [Wiley]
标识
DOI:10.1002/mrm.29547
摘要

To implement physics-based regularization as a stopping condition in tuning an untrained deep neural network for reconstructing MR images from accelerated data.The ConvDecoder (CD) neural network was trained with a physics-based regularization term incorporating the spoiled gradient echo equation that describes variable-flip angle data. Fully-sampled variable-flip angle k-space data were retrospectively accelerated by factors of R = {8, 12, 18, 36} and reconstructed with CD, CD with the proposed regularization (CD + r), locally low-rank (LR) reconstruction, and compressed sensing with L1-wavelet regularization (L1). Final images from CD + r training were evaluated at the "argmin" of the regularization loss; whereas the CD, LR, and L1 reconstructions were chosen optimally based on ground truth data. The performance measures used were the normalized RMS error, the concordance correlation coefficient, and the structural similarity index.The CD + r reconstructions, chosen using the stopping condition, yielded structural similarity indexs that were similar to the CD (p = 0.47) and LR structural similarity indexs (p = 0.95) across R and that were significantly higher than the L1 structural similarity indexs (p = 0.04). The concordance correlation coefficient values for the CD + r T1 maps across all R and subjects were greater than those corresponding to the L1 (p = 0.15) and LR (p = 0.13) T1 maps, respectively. For R ≥ 12 (≤4.2 min scan time), L1 and LR T1 maps exhibit a loss of spatially refined details compared to CD + r.The use of an untrained neural network together with a physics-based regularization loss shows promise as a measure for determining the optimal stopping point in training without relying on fully-sampled ground truth data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助shiyongkang1采纳,获得20
2秒前
善学以致用应助多情如容采纳,获得10
2秒前
唐文硕完成签到,获得积分10
3秒前
qzz完成签到,获得积分10
3秒前
3秒前
3秒前
yan完成签到,获得积分10
5秒前
怜然完成签到,获得积分10
5秒前
李健的小迷弟应助仁爱嫣采纳,获得10
6秒前
7秒前
7秒前
8秒前
闪闪的鹏博完成签到,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
周至发布了新的文献求助30
9秒前
乐观若烟完成签到,获得积分10
9秒前
00发布了新的文献求助10
10秒前
11秒前
Elsa完成签到,获得积分10
11秒前
yan发布了新的文献求助10
11秒前
笨笨思松发布了新的文献求助10
12秒前
12秒前
12秒前
kaka发布了新的文献求助10
13秒前
孟繁荣发布了新的文献求助10
13秒前
13秒前
13秒前
15秒前
科研通AI6.1应助zhang采纳,获得10
15秒前
脑洞疼应助任性糖豆采纳,获得10
15秒前
15秒前
乐观的从云完成签到,获得积分10
16秒前
魁梧的疾完成签到 ,获得积分10
17秒前
WF完成签到,获得积分10
17秒前
17秒前
18秒前
啦啦啦完成签到 ,获得积分10
18秒前
19秒前
shiyongkang1发布了新的文献求助20
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735045
求助须知:如何正确求助?哪些是违规求助? 5358060
关于积分的说明 15328419
捐赠科研通 4879484
什么是DOI,文献DOI怎么找? 2621957
邀请新用户注册赠送积分活动 1571152
关于科研通互助平台的介绍 1527932