已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An untrained deep learning method for reconstructing dynamic MR images from accelerated model‐based data

一致相关系数 正规化(语言学) 相似性(几何) 一致性 相关系数 人工神经网络 数学 模式识别(心理学) 人工智能 算法 提前停车 相关性 计算机科学 核磁共振 核医学 物理 统计 图像(数学) 几何学 医学 生物 生物信息学
作者
Slavkova, Kalina P.,DiCarlo, Julie C.,Wadhwa, Viraj,Wu, Chengyue,Virostko, John,Kumar, Sidharth,Yankeelov, Thomas E.,Tamir, Jonathan I.
出处
期刊:Magnetic Resonance in Medicine [Wiley]
标识
DOI:10.1002/mrm.29547
摘要

To implement physics-based regularization as a stopping condition in tuning an untrained deep neural network for reconstructing MR images from accelerated data.The ConvDecoder (CD) neural network was trained with a physics-based regularization term incorporating the spoiled gradient echo equation that describes variable-flip angle data. Fully-sampled variable-flip angle k-space data were retrospectively accelerated by factors of R = {8, 12, 18, 36} and reconstructed with CD, CD with the proposed regularization (CD + r), locally low-rank (LR) reconstruction, and compressed sensing with L1-wavelet regularization (L1). Final images from CD + r training were evaluated at the "argmin" of the regularization loss; whereas the CD, LR, and L1 reconstructions were chosen optimally based on ground truth data. The performance measures used were the normalized RMS error, the concordance correlation coefficient, and the structural similarity index.The CD + r reconstructions, chosen using the stopping condition, yielded structural similarity indexs that were similar to the CD (p = 0.47) and LR structural similarity indexs (p = 0.95) across R and that were significantly higher than the L1 structural similarity indexs (p = 0.04). The concordance correlation coefficient values for the CD + r T1 maps across all R and subjects were greater than those corresponding to the L1 (p = 0.15) and LR (p = 0.13) T1 maps, respectively. For R ≥ 12 (≤4.2 min scan time), L1 and LR T1 maps exhibit a loss of spatially refined details compared to CD + r.The use of an untrained neural network together with a physics-based regularization loss shows promise as a measure for determining the optimal stopping point in training without relying on fully-sampled ground truth data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助包李采纳,获得20
1秒前
nini完成签到,获得积分10
2秒前
ggsr完成签到 ,获得积分10
5秒前
福同学完成签到,获得积分10
5秒前
科研通AI2S应助包李采纳,获得20
5秒前
hawaii66完成签到 ,获得积分10
9秒前
12秒前
以乐完成签到 ,获得积分10
16秒前
凌寻冬完成签到,获得积分10
20秒前
顶钻师完成签到 ,获得积分10
21秒前
心灵美芯完成签到,获得积分10
23秒前
春宇完成签到 ,获得积分10
24秒前
24秒前
drjj完成签到 ,获得积分10
24秒前
ding应助凌寻冬采纳,获得10
24秒前
不开心发布了新的文献求助10
26秒前
孙壮壮发布了新的文献求助10
29秒前
31秒前
情怀应助孙壮壮采纳,获得10
34秒前
杜康完成签到,获得积分10
35秒前
35秒前
徐继军完成签到 ,获得积分10
38秒前
OmmeHabiba发布了新的文献求助10
41秒前
小二郎应助nabixx采纳,获得10
41秒前
轻松的尔风完成签到 ,获得积分10
42秒前
夏之应助充电宝采纳,获得10
42秒前
敬老院N号应助充电宝采纳,获得20
42秒前
栗子的小母牛完成签到 ,获得积分10
43秒前
孙壮壮完成签到,获得积分10
44秒前
diu完成签到,获得积分10
45秒前
所所应助飞过时间的猪采纳,获得10
48秒前
小马甲应助mysoul123采纳,获得10
49秒前
lvshuye完成签到,获得积分10
50秒前
毛豆应助个性的绝义采纳,获得20
56秒前
乐乐应助lvshuye采纳,获得10
1分钟前
1分钟前
扶桑完成签到,获得积分20
1分钟前
桐桐应助SCINEXUS采纳,获得10
1分钟前
结实小夏发布了新的文献求助10
1分钟前
扶桑发布了新的文献求助10
1分钟前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056349
求助须知:如何正确求助?哪些是违规求助? 2712892
关于积分的说明 7433585
捐赠科研通 2357851
什么是DOI,文献DOI怎么找? 1249112
科研通“疑难数据库(出版商)”最低求助积分说明 606850
版权声明 596195