Incorporating circuit theory, complex networks, and carbon offsets into the multi-objective optimization of ecological networks: A case study on karst regions in China

喀斯特 复杂网络 恢复生态学 偏移量(计算机科学) 生态学 功能生态学 生态网络 生态系统服务 计算机科学 环境科学 环境资源管理 地理 生物 生态系统 万维网 考古 程序设计语言
作者
Kexin Huang,Peng Li,Xiaohui Wang,Wei Deng,Ying Liu
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:383: 135512-135512 被引量:21
标识
DOI:10.1016/j.jclepro.2022.135512
摘要

Ecological networks (ENs) are important for maintaining regional ecological security and improving ecosystem service capacity. Therefore, it is important to consider spatial topological relationships and the need for carbon neutrality in the optimization of ENs. The optimization of EN structures and functions should be a systematic multi-objective process. This study combined landscape ecology, the complex network model, and spatial analysis technology, proposing an ecological barrier–topological feature–carbon offset-based (BTC-based) model research framework to deeply analyze and optimize ENs. First, the EN was preliminarily identified using the circuit theory model and the ecological barrier areas were simulated. Then, based on the complex network model, an undirected and unweighted complex network was established and its topological structural characteristics were analyzed. By constructing the estimation model for the carbon offset rate, its spatial distribution characteristics were calculated and interpreted. Finally, the BTC-based model was used to optimize the EN. Based on this model, Guizhou Province (a typical karst region in China) was taken as the research area for this study. The results showed that ecological improvement and degradation coexisted, and measures must be taken to optimize the EN. Based on the 2018 EN, the areas that required optimization were identified. Additionally, a restoration strategy was proposed for edge addition optimization for ecological corridors to promote the ecological protection and quality improvement of ecological sources and corridors. This approach would ensure the accurate implementation of ecological restoration projects and the effective management of ecosystems. The model proposed in this study also provides methodological support for EN optimization in other types of ecological regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NINI发布了新的文献求助10
1秒前
威武的水之完成签到,获得积分10
1秒前
熊大对熊二说熊要有个熊样完成签到,获得积分10
1秒前
2秒前
小蘑菇应助白白采纳,获得10
2秒前
2秒前
领导范儿应助三六九采纳,获得10
3秒前
大个应助rortis采纳,获得10
3秒前
CC发布了新的文献求助10
4秒前
靓丽的战斗机完成签到,获得积分10
4秒前
leong发布了新的文献求助10
4秒前
5秒前
5秒前
湘之灵若完成签到 ,获得积分10
5秒前
6秒前
香蕉觅云应助zhangzhuopu采纳,获得10
7秒前
脑洞疼应助yoyo5678采纳,获得10
8秒前
8秒前
悲惨雪糕W发布了新的文献求助10
9秒前
葡萄成熟时完成签到,获得积分10
9秒前
自由晓蕾发布了新的文献求助10
9秒前
HXH完成签到,获得积分10
9秒前
sss发布了新的文献求助10
10秒前
364097727发布了新的文献求助20
10秒前
10秒前
CipherSage应助NINI采纳,获得10
11秒前
Livvia完成签到,获得积分10
11秒前
阿钰发布了新的文献求助10
12秒前
12秒前
兜兜发布了新的文献求助10
13秒前
ACOY应助酷酷凤灵采纳,获得20
13秒前
小李发布了新的文献求助10
13秒前
安宁完成签到,获得积分10
13秒前
xukaixuan001发布了新的文献求助10
14秒前
gaopeng完成签到,获得积分10
16秒前
speedness发布了新的文献求助10
16秒前
震动的Eppendof完成签到 ,获得积分10
16秒前
您的帮助将会点亮世界完成签到,获得积分10
17秒前
17秒前
12345上山打老虎完成签到,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305226
求助须知:如何正确求助?哪些是违规求助? 2939075
关于积分的说明 8491339
捐赠科研通 2613524
什么是DOI,文献DOI怎么找? 1427464
科研通“疑难数据库(出版商)”最低求助积分说明 663054
邀请新用户注册赠送积分活动 647708