R-ATCN: Continuous Human Activity Recognition Using FMCW Radar with Temporal Convolutional Networks

计算机科学 雷达 帧(网络) 人工智能 卷积神经网络 领域(数学) 堆积 模式识别(心理学) 电信 数学 物理 核磁共振 纯数学
作者
Jiahao Chen,Minming Gu,Zhiyan Lin
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad9622
摘要

Abstract The utilization of millimeter-wave radar sensors for continuous human activity recognition technology has garnered significant interest. Prior research predominantly concentrated on recursive neural networks, which often incorporate numerous extraneous information features, hindering the ability to make precise and effective predictions for ongoing activities. In response to this challenge, this paper introduces a dual-dilated one-dimensional temporal convolutional network model with an attention mechanism (R-ATCN). By stacking temporal convolutions to enhance the receptive field without compromising temporal resolution, the R-ATCN effectively captures features. Additionally, the attention mechanism is employed to capture crucial frame information related to activity transitions and overall features. The study gathered 60 dat a sets from 5 participants utilizing Frequency Modulated Continuous Wave (FMCW) radar. It encompassed 8 various activities lasting a total of 52.5 minutes, with randomized durations and transition times for each activity. To evaluate the performance of the model, this paper also introduces evaluation metrics such as Short-Time Tolerance (STT) Score . Experimental results show that the R-ATCN model outperforms other contrastive models in terms of segmental F1-score and STT scores. The effectiveness of the proposed model lies in its ability to accurately identify ongoing human activities within indoor environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宇文青寒发布了新的文献求助10
刚刚
天天快乐应助微甜柠檬采纳,获得10
刚刚
36456657应助靳佳小台采纳,获得10
刚刚
jiyuan完成签到,获得积分10
刚刚
归尘发布了新的文献求助10
刚刚
完美世界应助研六六采纳,获得10
1秒前
han发布了新的文献求助10
2秒前
77发布了新的文献求助30
3秒前
BaekHyun发布了新的文献求助10
3秒前
钟意不离关注了科研通微信公众号
4秒前
lmh完成签到,获得积分10
4秒前
明亮的斩完成签到,获得积分10
4秒前
4秒前
三跳完成签到 ,获得积分10
4秒前
4秒前
缓慢如南应助HJJHJH采纳,获得10
5秒前
泡泡完成签到 ,获得积分10
6秒前
yjq完成签到,获得积分10
6秒前
Suzanne完成签到,获得积分10
8秒前
求知小生完成签到,获得积分10
8秒前
9秒前
wind完成签到,获得积分10
10秒前
长清给长清的求助进行了留言
10秒前
DDJoy完成签到,获得积分10
10秒前
小沫灬李完成签到,获得积分10
11秒前
11秒前
CodeCraft应助圣代采纳,获得10
12秒前
12秒前
12秒前
13秒前
林小橙完成签到 ,获得积分10
13秒前
Orange应助罗杰采纳,获得10
13秒前
rigeman完成签到,获得积分10
14秒前
qql发布了新的文献求助10
14秒前
14秒前
完美世界应助wer采纳,获得10
15秒前
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552503
求助须知:如何正确求助?哪些是违规求助? 3128579
关于积分的说明 9378740
捐赠科研通 2827750
什么是DOI,文献DOI怎么找? 1554537
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714980