PointCHD: A Point Cloud Benchmark for Congenital Heart Disease Classification and Segmentation

水准点(测量) 计算机科学 分割 点云 云计算 人工智能 点(几何) 模式识别(心理学) 地图学 地理 数学 几何学 操作系统
作者
Dinghao Yang,Wei Gao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/jbhi.2024.3495035
摘要

Congenital heart disease (CHD) is one of the most common birth defects. With the development of medical imaging analysis technology, medical image analysis for CHD has become an important research direction. Due to the lack of data and the difficulty of labeling, CHD datasets are scarce. Previous studies focused on CT and other medical image modes, while point cloud is still unstudied. As a representative type of 3D data, point cloud can intuitively model organ shapes, which has obvious advantages in medical analysis and can assist doctors in diagnosis. However, the production of a medical point cloud dataset is more complex than that of an image dataset, and the 3D modeling of internal organs needs to be reconstructed after scanning by high-precision instruments. We propose PointCHD, the first point cloud dataset for CHD diagnosis, with a large number of high precision-annotated and wide-categorized data. PointCHD includes different types of three-dimensional data with varying degrees of distortion, and supports multiple analysis tasks, i.e. classification, segmentation, reconstruction, etc. We also construct a benchmark on PointCHD with the goal of medical diagnosis, we design the analysis process and compare the performances of the mainstream point cloud analysis methods. In view of the complex internal and external structure of the heart point cloud, we propose a point cloud representation learning method based on manifold learning. By introducing normal lines to consider the continuity of the surface to construct a manifold learning method of the adaptive projection plane, fully extracted the structural features of the heart, and achieved the best performance on each task of the PointCHD benchmark. Finally, we summarize the existing problems in the analysis of the CHD point cloud and prospects for potential research directions in the future. The benchmark will be released soon.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秀丽烨霖给Susie411的求助进行了留言
1秒前
1秒前
Bella发布了新的文献求助30
1秒前
whatever应助橙子不是水果采纳,获得20
2秒前
Singularity发布了新的文献求助10
2秒前
糊涂的雁易应助qz采纳,获得10
2秒前
piko11完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
调研昵称发布了新的文献求助10
4秒前
5秒前
吾身无拘完成签到,获得积分10
5秒前
希望天下0贩的0应助ty采纳,获得10
5秒前
SciGPT应助小松松采纳,获得10
6秒前
森宝完成签到,获得积分10
6秒前
6秒前
奇奇发布了新的文献求助10
6秒前
Clover完成签到,获得积分10
7秒前
SY发布了新的文献求助10
7秒前
高高高应助zzz采纳,获得10
7秒前
默默傻姑完成签到,获得积分10
7秒前
hjgg发布了新的文献求助10
8秒前
莹仔发布了新的文献求助10
9秒前
LXY发布了新的文献求助10
9秒前
chum555发布了新的文献求助10
9秒前
9秒前
上进生发布了新的文献求助10
10秒前
领导范儿应助liukee采纳,获得10
10秒前
10秒前
zzs喵完成签到,获得积分10
11秒前
善学以致用应助Jorna采纳,获得10
11秒前
缥缈冷亦完成签到,获得积分10
11秒前
12秒前
CodeCraft应助笑寒采纳,获得10
12秒前
祖诗云发布了新的文献求助10
13秒前
英姑应助lindongyan采纳,获得10
13秒前
小王的科研完成签到,获得积分20
13秒前
爱学习的猫完成签到,获得积分10
13秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227802
求助须知:如何正确求助?哪些是违规求助? 2875741
关于积分的说明 8192365
捐赠科研通 2542879
什么是DOI,文献DOI怎么找? 1373241
科研通“疑难数据库(出版商)”最低求助积分说明 646713
邀请新用户注册赠送积分活动 621181