External validation of predictive models for antibiotic susceptibility of urine culture

队列 医学 抗菌管理 接收机工作特性 算法 抗生素 经验性治疗 队列研究 曲线下面积 药方 机器学习 急诊医学 内科学 重症监护医学 人工智能 抗生素耐药性 计算机科学 病理 药理学 微生物学 生物 替代医学
作者
Glenn T. Werneburg,Daniel D. Rhoads,Alex Milinovich,Seán McSweeney,Jacob Knorr,Lyla Mourany,Alex Zajichek,Howard B. Goldman,Georges‐Pascal Haber,Sandip P. Vasavada
出处
期刊:BJUI [Wiley]
标识
DOI:10.1111/bju.16626
摘要

Objective To develop, externally validate, and test a series of computer algorithms to accurately predict antibiotic susceptibility test (AST) results at the time of clinical diagnosis, up to 3 days before standard urine culture results become available, with the goal of improving antibiotic stewardship and patient outcomes. Patients and Methods Machine learning algorithms were developed and trained to predict susceptibility or resistance using over 4.7 million discrete AST classifications from urine cultures in a cohort of adult patients from outpatient and inpatient settings from 2012 to 2022. The algorithms were validated on a cohort from a geographically‐distant hospital system, ~1931 km (~1200 miles) from the training cohort facilities, from the same time period. Finally, algorithms were clinically validated in a contemporary cohort and compared to the empiric therapy prescribed by clinicians. Appropriateness of the antibiotics selected by clinicians and the algorithm during the clinical validation was compared. Results Algorithms were accurate during clinical validation (area under the receiver operating characteristic curve [AUC] 0.71–0.94) for all 11 tested antibiotics. The algorithms’ accuracy improved as the organism was identified (AUC 0.79–0.97). In external validation in a geographically‐distant cohort, the algorithms remained accurate even without additional training on this group (AUC 0.69–0.87). When the algorithms were trained on the antibiogram from the geographically‐distant hospital, the accuracy improved (AUC 0.70–0.93). When algorithms’ performances were tested against clinicians in a contemporary cohort for the empiric prescription of oral antibiotics, the drug agent suggested by the algorithms more frequently resulted in adequate empiric coverage. Conclusions Machine learning algorithms trained on a large dataset are accurate in prediction of urine culture susceptibility vs resistance up to 3 days prior to urine AST availability. Clinical implementation of such an algorithm could improve both clinical care and antimicrobial stewardship.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yuan发布了新的文献求助10
1秒前
2秒前
cc完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
一一发布了新的文献求助10
3秒前
领导范儿应助Chridy采纳,获得10
3秒前
4秒前
凤凰山发布了新的文献求助10
4秒前
4秒前
孔雨珍发布了新的文献求助10
4秒前
淡定的思松应助通~采纳,获得10
5秒前
5秒前
明亮的八宝粥完成签到,获得积分10
5秒前
mayungui发布了新的文献求助10
5秒前
大型海狮完成签到,获得积分10
5秒前
搜集达人应助科研菜鸟采纳,获得10
6秒前
雨天有伞完成签到,获得积分10
6秒前
蕾子发布了新的文献求助10
6秒前
6秒前
zhui发布了新的文献求助10
6秒前
wanci应助jxcandice采纳,获得10
6秒前
factor发布了新的文献求助10
6秒前
7秒前
泊声发布了新的文献求助20
7秒前
narthon完成签到 ,获得积分10
7秒前
梦幻完成签到,获得积分10
7秒前
1604531786完成签到,获得积分10
7秒前
研友_LMNjkn发布了新的文献求助10
8秒前
xiao发布了新的文献求助10
8秒前
ww发布了新的文献求助10
8秒前
9秒前
Olsters发布了新的文献求助10
9秒前
深情安青应助该睡觉啦采纳,获得10
9秒前
9秒前
SEV完成签到,获得积分20
9秒前
愉快迎荷完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794