External validation of predictive models for antibiotic susceptibility of urine culture

队列 医学 抗菌管理 接收机工作特性 算法 抗生素 经验性治疗 队列研究 曲线下面积 药方 机器学习 急诊医学 内科学 重症监护医学 人工智能 抗生素耐药性 计算机科学 病理 药理学 微生物学 生物 替代医学
作者
Glenn T. Werneburg,Daniel D. Rhoads,Alex Milinovich,Seán McSweeney,Jacob Knorr,Lyla Mourany,Alex Zajichek,Howard B. Goldman,Georges‐Pascal Haber,Sandip P. Vasavada
出处
期刊:BJUI [Wiley]
标识
DOI:10.1111/bju.16626
摘要

Objective To develop, externally validate, and test a series of computer algorithms to accurately predict antibiotic susceptibility test (AST) results at the time of clinical diagnosis, up to 3 days before standard urine culture results become available, with the goal of improving antibiotic stewardship and patient outcomes. Patients and Methods Machine learning algorithms were developed and trained to predict susceptibility or resistance using over 4.7 million discrete AST classifications from urine cultures in a cohort of adult patients from outpatient and inpatient settings from 2012 to 2022. The algorithms were validated on a cohort from a geographically‐distant hospital system, ~1931 km (~1200 miles) from the training cohort facilities, from the same time period. Finally, algorithms were clinically validated in a contemporary cohort and compared to the empiric therapy prescribed by clinicians. Appropriateness of the antibiotics selected by clinicians and the algorithm during the clinical validation was compared. Results Algorithms were accurate during clinical validation (area under the receiver operating characteristic curve [AUC] 0.71–0.94) for all 11 tested antibiotics. The algorithms’ accuracy improved as the organism was identified (AUC 0.79–0.97). In external validation in a geographically‐distant cohort, the algorithms remained accurate even without additional training on this group (AUC 0.69–0.87). When the algorithms were trained on the antibiogram from the geographically‐distant hospital, the accuracy improved (AUC 0.70–0.93). When algorithms’ performances were tested against clinicians in a contemporary cohort for the empiric prescription of oral antibiotics, the drug agent suggested by the algorithms more frequently resulted in adequate empiric coverage. Conclusions Machine learning algorithms trained on a large dataset are accurate in prediction of urine culture susceptibility vs resistance up to 3 days prior to urine AST availability. Clinical implementation of such an algorithm could improve both clinical care and antimicrobial stewardship.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
litianqi完成签到,获得积分10
刚刚
木槿花难开完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
WenTang发布了新的文献求助10
3秒前
藿馨儿发布了新的文献求助10
3秒前
共享精神应助冷漠的布丁采纳,获得10
3秒前
JuTou完成签到,获得积分10
3秒前
4秒前
mini完成签到,获得积分10
4秒前
小马甲应助奇遇采纳,获得30
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
香蕉觅云应助litianqi采纳,获得30
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
HAHAH发布了新的文献求助10
5秒前
bkagyin应助科研通管家采纳,获得50
5秒前
5秒前
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
5秒前
小超完成签到,获得积分10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
5秒前
xzy998应助科研通管家采纳,获得10
5秒前
6秒前
bkagyin应助hanchangcun采纳,获得10
6秒前
ltxinanjiao发布了新的文献求助10
6秒前
7秒前
TGH发布了新的文献求助10
7秒前
9秒前
汉堡包应助youlingduxiu采纳,获得10
9秒前
狂野书易发布了新的文献求助30
9秒前
ikkk完成签到,获得积分20
9秒前
10秒前
WenTang完成签到,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951532
求助须知:如何正确求助?哪些是违规求助? 3496928
关于积分的说明 11085323
捐赠科研通 3227364
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868444
科研通“疑难数据库(出版商)”最低求助积分说明 801139