External validation of predictive models for antibiotic susceptibility of urine culture

队列 医学 抗菌管理 接收机工作特性 算法 抗生素 经验性治疗 队列研究 曲线下面积 药方 机器学习 急诊医学 内科学 重症监护医学 人工智能 抗生素耐药性 计算机科学 病理 药理学 生物 微生物学 替代医学
作者
Glenn T. Werneburg,Daniel D. Rhoads,Alex Milinovich,Seán McSweeney,Jacob Knorr,Lyla Mourany,Alex Zajichek,Howard B. Goldman,Georges‐Pascal Haber,Sandip P. Vasavada
出处
期刊:BJUI [Wiley]
标识
DOI:10.1111/bju.16626
摘要

Objective To develop, externally validate, and test a series of computer algorithms to accurately predict antibiotic susceptibility test (AST) results at the time of clinical diagnosis, up to 3 days before standard urine culture results become available, with the goal of improving antibiotic stewardship and patient outcomes. Patients and Methods Machine learning algorithms were developed and trained to predict susceptibility or resistance using over 4.7 million discrete AST classifications from urine cultures in a cohort of adult patients from outpatient and inpatient settings from 2012 to 2022. The algorithms were validated on a cohort from a geographically‐distant hospital system, ~1931 km (~1200 miles) from the training cohort facilities, from the same time period. Finally, algorithms were clinically validated in a contemporary cohort and compared to the empiric therapy prescribed by clinicians. Appropriateness of the antibiotics selected by clinicians and the algorithm during the clinical validation was compared. Results Algorithms were accurate during clinical validation (area under the receiver operating characteristic curve [AUC] 0.71–0.94) for all 11 tested antibiotics. The algorithms’ accuracy improved as the organism was identified (AUC 0.79–0.97). In external validation in a geographically‐distant cohort, the algorithms remained accurate even without additional training on this group (AUC 0.69–0.87). When the algorithms were trained on the antibiogram from the geographically‐distant hospital, the accuracy improved (AUC 0.70–0.93). When algorithms’ performances were tested against clinicians in a contemporary cohort for the empiric prescription of oral antibiotics, the drug agent suggested by the algorithms more frequently resulted in adequate empiric coverage. Conclusions Machine learning algorithms trained on a large dataset are accurate in prediction of urine culture susceptibility vs resistance up to 3 days prior to urine AST availability. Clinical implementation of such an algorithm could improve both clinical care and antimicrobial stewardship.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿翼完成签到 ,获得积分10
1秒前
钱念波完成签到 ,获得积分10
5秒前
NexusExplorer应助非也非也6采纳,获得10
5秒前
乐乐应助峰宝宝采纳,获得10
5秒前
Akim应助zing采纳,获得10
6秒前
大强完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
充电宝应助木子采纳,获得10
9秒前
自由青柏发布了新的文献求助10
11秒前
GU发布了新的文献求助10
13秒前
浅浅的完成签到 ,获得积分10
14秒前
15秒前
jason完成签到,获得积分10
15秒前
lancer完成签到,获得积分10
15秒前
16秒前
桐桐应助科研民工采纳,获得10
18秒前
浅尝离白应助科研通管家采纳,获得30
19秒前
天天快乐应助科研通管家采纳,获得10
19秒前
8R60d8应助科研通管家采纳,获得10
19秒前
Candice应助科研通管家采纳,获得10
19秒前
20秒前
zing发布了新的文献求助10
20秒前
8R60d8应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得30
20秒前
Candice应助科研通管家采纳,获得10
20秒前
情怀应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
浅尝离白应助科研通管家采纳,获得30
20秒前
苹果丑应助科研通管家采纳,获得10
21秒前
科研小子完成签到 ,获得积分10
21秒前
酷波er应助科研通管家采纳,获得10
21秒前
咻咻应助科研通管家采纳,获得20
21秒前
有思想完成签到,获得积分10
22秒前
Hayat发布了新的文献求助10
26秒前
30秒前
30秒前
32秒前
开心子骞发布了新的文献求助20
32秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262769
求助须知:如何正确求助?哪些是违规求助? 2903373
关于积分的说明 8325014
捐赠科研通 2573399
什么是DOI,文献DOI怎么找? 1398263
科研通“疑难数据库(出版商)”最低求助积分说明 654051
邀请新用户注册赠送积分活动 632668