🔥 科研通第二届『应助活动周』正在进行中,3月24-30日求助秒级响应🚀,千元现金等你拿。当前排名🏆 📚 中科院2025期刊分区📊 已更新

Logistic-Grey-Markov prediction model

逻辑回归 马尔可夫链 计算机科学 人工智能 统计 机器学习 数学
作者
Lei Zhang,Ruijiang Li,Chen Jia
出处
期刊:Grey systems [Emerald (MCB UP)]
标识
DOI:10.1108/gs-07-2024-0087
摘要

Purpose In this study, a novel grey combined model, termed the logistic-Grey-Markov model, is proposed. This model aims to construct a relation function between transition probabilities and residual errors and fully utilize the information from residual errors to calculate optimal transition probabilities for more accurate predictions. Design/methodology/approach To address this issue, the logistic function is introduced and improved to accommodate different types of samples. Then the improved logistic function is applied to construct a relation function between transition probabilities and sample residual errors. Additionally, to obtain the optimal coefficients in the relation function, a least square objective function is constructed, and the Levenberg–Marquardt algorithm is employed. With these optimal coefficients, the relation function can fully utilize the information of residual errors and calculate the optimal transition probabilities. Findings The improved logistic function in the logistic-Grey-Markov model ensures that the information from sample residual errors is fully utilized and case studies demonstrate that the proposed logistic-Grey-Markov model can effectively improve the prediction accuracy. Originality/value One of the strengths of the Grey-Markov model is its ability to predict outcomes with small and highly volatile samples. However, the prediction accuracy is not ideal due to the information waste of residual errors, especially when only a small sample size is available. The proposed logistic-Grey-Markov model can fully utilize the information in residual errors to calculate the optimal transition probabilities and improve the accuracy of the Grey-Markov model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
应助活动周(3月24-30日)排名

10分钟更新一次,完整排名情况
实时播报
刚刚
JJJJJin发布了新的文献求助10
刚刚
英姑应助南海牧鲸人采纳,获得10
刚刚
lsy发布了新的文献求助10
刚刚
追寻的涵菱完成签到,获得积分10
刚刚
YuJianQiao完成签到,获得积分10
刚刚
金长慧完成签到,获得积分10
1秒前
哎嘿应助sanyecai采纳,获得10
1秒前
Murphy_H完成签到,获得积分10
1秒前
哭泣的遥发布了新的文献求助10
1秒前
1秒前
桐桐应助救救采纳,获得10
3秒前
CATH发布了新的文献求助10
3秒前
木木发布了新的文献求助10
3秒前
英俊的铭应助Mr_clf采纳,获得10
3秒前
3秒前
gxy完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
呆呆完成签到,获得积分10
4秒前
zzz发布了新的文献求助10
5秒前
5秒前
阿玖完成签到,获得积分10
6秒前
Orange应助大黄日记本采纳,获得10
6秒前
6秒前
6秒前
6秒前
科研通AI5应助细心以丹采纳,获得10
7秒前
vocrious发布了新的文献求助10
7秒前
粽粽发布了新的文献求助10
7秒前
无花果应助gongranpi采纳,获得10
8秒前
8秒前
8秒前
8秒前
小苗儿发布了新的文献求助10
8秒前
9秒前
9秒前
sober发布了新的文献求助10
9秒前
9秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Continuum Thermodynamics and Material Modelling 2000
On Troodon validus, an orthopodous dinosaur from the Belly River Cretaceous of Alberta, Canada 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 化学工程 复合材料 基因 遗传学 催化作用 物理化学 细胞生物学 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3611079
求助须知:如何正确求助?哪些是违规求助? 3182693
关于积分的说明 9598491
捐赠科研通 2888820
什么是DOI,文献DOI怎么找? 1584556
邀请新用户注册赠送积分活动 745289
科研通“疑难数据库(出版商)”最低求助积分说明 727623