A Comprehensive Survey of Forgetting in Deep Learning Beyond Continual Learning

遗忘 人工智能 深度学习 计算机科学 机器学习 数据科学 心理学 认知心理学
作者
Zhenyi Wang,Enneng Yang,Li Shen,Heng Huang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:47 (3): 1464-1483 被引量:14
标识
DOI:10.1109/tpami.2024.3498346
摘要

Forgetting refers to the loss or deterioration of previously acquired knowledge. While existing surveys on forgetting have primarily focused on continual learning, forgetting is a prevalent phenomenon observed in various other research domains within deep learning. Forgetting manifests in research fields such as generative models due to generator shifts, and federated learning due to heterogeneous data distributions across clients. Addressing forgetting encompasses several challenges, including balancing the retention of old task knowledge with fast learning of new task, managing task interference with conflicting goals, and preventing privacy leakage, etc. Moreover, most existing surveys on continual learning implicitly assume that forgetting is always harmful. In contrast, our survey argues that forgetting is a double-edged sword and can be beneficial and desirable in certain cases, such as privacy-preserving scenarios. By exploring forgetting in a broader context, we present a more nuanced understanding of this phenomenon and highlight its potential advantages. Through this comprehensive survey, we aspire to uncover potential solutions by drawing upon ideas and approaches from various fields that have dealt with forgetting. By examining forgetting beyond its conventional boundaries, we hope to encourage the development of novel strategies for mitigating, harnessing, or even embracing forgetting in real applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
步步完成签到 ,获得积分10
刚刚
1秒前
2秒前
小巧亦竹完成签到,获得积分10
2秒前
kdjm688发布了新的文献求助10
2秒前
ddd完成签到,获得积分20
3秒前
阿吉泰完成签到,获得积分10
3秒前
xifengblue完成签到,获得积分10
3秒前
迷路傲松完成签到,获得积分10
3秒前
xiaxia发布了新的文献求助10
3秒前
4秒前
4秒前
危机的河马完成签到,获得积分10
5秒前
邰猫猫完成签到,获得积分10
5秒前
小马甲应助威武鸽子采纳,获得10
5秒前
5秒前
6秒前
assd发布了新的文献求助10
6秒前
慕青应助明理丹烟采纳,获得10
7秒前
keyantong完成签到,获得积分10
8秒前
9秒前
小二郎应助惜惜采纳,获得10
9秒前
study623完成签到,获得积分10
9秒前
嘟嘟豆806发布了新的文献求助10
9秒前
10秒前
ye发布了新的文献求助10
10秒前
10秒前
10秒前
yunsww完成签到,获得积分10
11秒前
华新完成签到,获得积分10
11秒前
酷波er应助一一采纳,获得10
12秒前
111发布了新的文献求助30
13秒前
acutelily完成签到,获得积分10
13秒前
14秒前
14秒前
研友_rLmrgn发布了新的文献求助10
15秒前
15秒前
16秒前
罗小学发布了新的文献求助10
16秒前
17秒前
高分求助中
All the Birds of the World 2000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3718018
求助须知:如何正确求助?哪些是违规求助? 3264798
关于积分的说明 9935884
捐赠科研通 2978546
什么是DOI,文献DOI怎么找? 1633491
邀请新用户注册赠送积分活动 775172
科研通“疑难数据库(出版商)”最低求助积分说明 745437