Minimalist optical system image restoration based on deep attention Wiener network

图像复原 计算机科学 人工智能 维纳滤波器 计算机视觉 图像(数学) 图像处理
作者
Ziyang Wang,Yan Zhou,Runzhou Shi,Jian Bai
标识
DOI:10.1117/12.3035906
摘要

Aberrations in minimalist optical imaging systems pose significant challenges to achieving high-quality imaging. Traditional Wiener filtering methods, though effective, are constrained by their dependency on precise blur kernels and noise models, and their performance degrades with spatial variations in these parameters. On the other hand, deep learning techniques often fail to fully utilize prior information about aberrations and suffer from limited interpretability. To address these limitations, we propose a novel deep attention Wiener network (DAWN). This approach integrates deep learning with Wiener filtering to enhance image restoration while reducing computational complexity. By using optical simulations to generate blur kernels and noise models that closely mirror real conditions, our method fits distinct point spread function (PSF) for different fields of view (FOV), creating a robust dataset for training. The DAWN model first employs a convolutional neural network (CNN) for feature extraction, followed by sequential Wiener filtering applied in half FOV block length steps. To further improve image restoration, a nonlinear activation free net (NAFNet) is used to correct discrepancies introduced by simulated blur kernels and noise models. The model is trained end-to-end, and to streamline the process, Wiener filtering is confined to 4 × 4 FOV blocks. A weighting matrix within the Wiener filtering layer mitigates seams between adjacent blocks. Simulation and experiment results demonstrate that our approach outperforms the mainstream image restoration methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王正浩完成签到 ,获得积分10
刚刚
Dr_Ma发布了新的文献求助10
1秒前
tulips发布了新的文献求助10
1秒前
王文茹完成签到,获得积分10
1秒前
李小小飞完成签到,获得积分10
2秒前
nextconnie完成签到,获得积分10
3秒前
3秒前
大模型应助wb采纳,获得10
3秒前
老实的以柳完成签到 ,获得积分10
5秒前
6秒前
巨人肩上完成签到,获得积分10
7秒前
wxy发布了新的文献求助10
7秒前
Zone完成签到 ,获得积分10
10秒前
甜甜秋荷发布了新的文献求助10
11秒前
含蓄听南完成签到 ,获得积分10
11秒前
鲸落完成签到 ,获得积分10
12秒前
木心o完成签到,获得积分10
12秒前
喵哥233完成签到,获得积分10
12秒前
2275523154完成签到,获得积分10
14秒前
红炉点血完成签到,获得积分10
14秒前
chiech完成签到,获得积分10
14秒前
15秒前
16秒前
熊泰山完成签到 ,获得积分10
16秒前
沫沫完成签到 ,获得积分10
17秒前
hhan完成签到,获得积分10
17秒前
NexusExplorer应助星光采纳,获得10
18秒前
19秒前
19秒前
思源应助KIKIKI采纳,获得10
20秒前
研友_VZG7GZ应助chiech采纳,获得10
20秒前
消摇完成签到,获得积分10
21秒前
pengpeng完成签到,获得积分10
22秒前
tulips发布了新的文献求助10
22秒前
杨洋完成签到 ,获得积分10
22秒前
WHUT-Batteries完成签到,获得积分0
23秒前
Echo1128完成签到 ,获得积分10
24秒前
丰富白秋完成签到,获得积分10
24秒前
小乐0528完成签到 ,获得积分10
25秒前
苦行僧完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294333
求助须知:如何正确求助?哪些是违规求助? 4444199
关于积分的说明 13832392
捐赠科研通 4328271
什么是DOI,文献DOI怎么找? 2376032
邀请新用户注册赠送积分活动 1371362
关于科研通互助平台的介绍 1336532