Minimalist optical system image restoration based on deep attention Wiener network

图像复原 计算机科学 人工智能 维纳滤波器 计算机视觉 图像(数学) 图像处理
作者
Ziyang Wang,Yan Zhou,Runzhou Shi,Jian Bai
标识
DOI:10.1117/12.3035906
摘要

Aberrations in minimalist optical imaging systems pose significant challenges to achieving high-quality imaging. Traditional Wiener filtering methods, though effective, are constrained by their dependency on precise blur kernels and noise models, and their performance degrades with spatial variations in these parameters. On the other hand, deep learning techniques often fail to fully utilize prior information about aberrations and suffer from limited interpretability. To address these limitations, we propose a novel deep attention Wiener network (DAWN). This approach integrates deep learning with Wiener filtering to enhance image restoration while reducing computational complexity. By using optical simulations to generate blur kernels and noise models that closely mirror real conditions, our method fits distinct point spread function (PSF) for different fields of view (FOV), creating a robust dataset for training. The DAWN model first employs a convolutional neural network (CNN) for feature extraction, followed by sequential Wiener filtering applied in half FOV block length steps. To further improve image restoration, a nonlinear activation free net (NAFNet) is used to correct discrepancies introduced by simulated blur kernels and noise models. The model is trained end-to-end, and to streamline the process, Wiener filtering is confined to 4 × 4 FOV blocks. A weighting matrix within the Wiener filtering layer mitigates seams between adjacent blocks. Simulation and experiment results demonstrate that our approach outperforms the mainstream image restoration methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助兔兔采纳,获得10
刚刚
1秒前
1秒前
2秒前
ll完成签到,获得积分20
3秒前
霍巧凡发布了新的文献求助10
3秒前
beplayer1完成签到,获得积分10
4秒前
棕榈发布了新的文献求助10
5秒前
完美世界应助S1采纳,获得10
5秒前
5秒前
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
sophia完成签到,获得积分10
7秒前
7秒前
Lyp888206发布了新的文献求助10
8秒前
9秒前
ll发布了新的文献求助10
10秒前
sophia发布了新的文献求助20
10秒前
复杂绝悟发布了新的文献求助10
11秒前
12秒前
爱雪的猫发布了新的文献求助10
12秒前
12秒前
王倩倩发布了新的文献求助20
14秒前
shary完成签到,获得积分10
14秒前
甜蜜骁发布了新的文献求助30
15秒前
祖老头发布了新的文献求助10
16秒前
英俊的铭应助起司猫采纳,获得10
16秒前
Double完成签到 ,获得积分10
16秒前
科研通AI6应助不安的凡桃采纳,获得10
16秒前
Owen应助棕榈采纳,获得10
18秒前
Sakurasamada发布了新的文献求助20
18秒前
18秒前
白羊完成签到,获得积分10
19秒前
19秒前
薛之谦的猫应助任性白秋采纳,获得10
19秒前
向日葵完成签到 ,获得积分10
19秒前
Lee完成签到,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594501
求助须知:如何正确求助?哪些是违规求助? 4680157
关于积分的说明 14813307
捐赠科研通 4647283
什么是DOI,文献DOI怎么找? 2534960
邀请新用户注册赠送积分活动 1503016
关于科研通互助平台的介绍 1469521