Minimalist optical system image restoration based on deep attention Wiener network

图像复原 计算机科学 人工智能 维纳滤波器 计算机视觉 图像(数学) 图像处理
作者
Ziyang Wang,Yan Zhou,Runzhou Shi,Jian Bai
标识
DOI:10.1117/12.3035906
摘要

Aberrations in minimalist optical imaging systems pose significant challenges to achieving high-quality imaging. Traditional Wiener filtering methods, though effective, are constrained by their dependency on precise blur kernels and noise models, and their performance degrades with spatial variations in these parameters. On the other hand, deep learning techniques often fail to fully utilize prior information about aberrations and suffer from limited interpretability. To address these limitations, we propose a novel deep attention Wiener network (DAWN). This approach integrates deep learning with Wiener filtering to enhance image restoration while reducing computational complexity. By using optical simulations to generate blur kernels and noise models that closely mirror real conditions, our method fits distinct point spread function (PSF) for different fields of view (FOV), creating a robust dataset for training. The DAWN model first employs a convolutional neural network (CNN) for feature extraction, followed by sequential Wiener filtering applied in half FOV block length steps. To further improve image restoration, a nonlinear activation free net (NAFNet) is used to correct discrepancies introduced by simulated blur kernels and noise models. The model is trained end-to-end, and to streamline the process, Wiener filtering is confined to 4 × 4 FOV blocks. A weighting matrix within the Wiener filtering layer mitigates seams between adjacent blocks. Simulation and experiment results demonstrate that our approach outperforms the mainstream image restoration methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
charllie完成签到 ,获得积分10
刚刚
空禅yew完成签到,获得积分10
1秒前
坚强亦丝应助跳跃采纳,获得10
3秒前
英俊的铭应助cc采纳,获得10
3秒前
huangsan完成签到,获得积分10
3秒前
匹诺曹完成签到,获得积分10
3秒前
4秒前
华仔应助进取拼搏采纳,获得10
4秒前
5秒前
dingdong发布了新的文献求助10
5秒前
you完成签到 ,获得积分10
6秒前
qwf完成签到 ,获得积分10
6秒前
7秒前
万能图书馆应助一一采纳,获得10
7秒前
执着跳跳糖完成签到 ,获得积分10
8秒前
阳yang完成签到,获得积分10
8秒前
牛头人完成签到,获得积分10
8秒前
9秒前
Rrr发布了新的文献求助10
9秒前
10秒前
10秒前
serenity完成签到 ,获得积分10
10秒前
Benliu完成签到,获得积分10
10秒前
csq发布了新的文献求助10
11秒前
12秒前
Hello应助外向的醉易采纳,获得10
12秒前
DWWWDAADAD完成签到,获得积分10
15秒前
科研通AI5应助一天八杯水采纳,获得10
16秒前
杨大仙儿完成签到 ,获得积分10
16秒前
18秒前
坚强的广山应助木头人采纳,获得200
18秒前
嘻哈学习完成签到,获得积分10
18秒前
18秒前
18秒前
ying完成签到,获得积分10
19秒前
19秒前
虚幻白玉完成签到,获得积分10
20秒前
安静的孤萍完成签到,获得积分10
21秒前
21秒前
lyz666发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808