A robust underwater image enhancement algorithm

计算机科学 水下 图像(数学) 图像增强 人工智能 算法 计算机视觉 地质学 海洋学
作者
Kuo‐Jui Hu,Yi-Tsung Pan,Liwei Jiang,Sin-Der Lee,Sheng-Long Kao
出处
期刊:The Journal of Supercomputing [Springer Nature]
卷期号:81 (1)
标识
DOI:10.1007/s11227-024-06719-0
摘要

Capturing clear images in underwater environments is a major challenge in marine engineering. There are many issues to consider in obtaining clear underwater images such as climate, environment, and human factors. The most important reasons are the atomization effect caused by dispersion and the color cast caused by inconsistent energy attenuation of each wavelength when light propagates in water. Recently, deep learning technology has shown impressive performance on underwater image enhancement. The deep learning-based methods apply to the underwater image enhancement tasks. We propose a deep learning model for inferring a degradation model to further improve image dynamic range through a network-guided underwater image enhancement network architecture with multicolor space embedding and convolutional media transfer, fixed an issue with limited dynamic range and brightness in underwater images. Quantitative and qualitative results show that our network performs relatively well in the Underwater Image Enhancement Benchmark (UIEB) [7] dataset compared to other recent methods, and is expected to be applied to different types of underwater work and environments in the future and reduce the degradation problems that often occur with underwater images. The acquisition of high-fidelity imagery in subaqueous environments presents significant technical challenges in marine engineering, encompassing a complex interplay of climatological variables, environmental parameters, and anthropogenic factors. Primary impediments to image clarity comprise the atomization phenomenon induced by optical scattering and chromatic distortion resulting from wavelength-dependent energy attenuation in aqueous media. The procurement of high-resolution underwater imagery is fundamental to numerous scientific applications, including marine biological research, autonomous underwater robotics, and environmental surveillance systems, where precise visual data acquisition substantially augments analytical efficacy. Contemporary developments in deep learning architectures have exhibited remarkable potential for enhancing underwater image quality. In response to these challenges, we present a novel deep learning framework that derives an empirical degradation model, utilizing a network-guided enhancement architecture incorporating multicolor space embedding and convolutional media transfer methodologies to optimize image dynamic range. This methodological approach specifically addresses the limitations in luminance distribution and dynamic range characteristics inherent in subsea imagery. Empirical evaluation of our architectural framework on the standardized Underwater Image Enhancement Benchmark (UIEB) [7] dataset demonstrates statistically significant performance improvements over contemporary methodologies, suggesting broad applicability across diverse submarine environments for mitigating common degradation phenomena.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇潇雨歇发布了新的文献求助10
刚刚
1秒前
完美的妙芹完成签到,获得积分10
1秒前
2秒前
ChenCi发布了新的文献求助10
2秒前
赘婿应助谭一采纳,获得30
3秒前
8秒前
完美翎完成签到 ,获得积分20
9秒前
Lah发布了新的文献求助10
11秒前
星辰发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
嘴嘴是大嘴007完成签到,获得积分10
14秒前
我是老大应助梦璃采纳,获得10
15秒前
8R60d8应助专一的小海豚采纳,获得10
15秒前
16秒前
16秒前
谭一完成签到,获得积分10
18秒前
asdfqaz发布了新的文献求助10
18秒前
雨夜星空应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
大个应助科研通管家采纳,获得30
18秒前
科目三应助科研通管家采纳,获得10
18秒前
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
火山应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
21秒前
谭一发布了新的文献求助30
22秒前
言之有理发布了新的文献求助10
25秒前
梦璃发布了新的文献求助10
27秒前
28秒前
雨夜星空应助real季氢采纳,获得10
28秒前
Ava应助星辰采纳,获得10
29秒前
王博士发布了新的文献求助10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Discourse, Identities and Genres in Corporate Communication 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3359822
求助须知:如何正确求助?哪些是违规求助? 2982407
关于积分的说明 8703656
捐赠科研通 2664099
什么是DOI,文献DOI怎么找? 1458822
科研通“疑难数据库(出版商)”最低求助积分说明 675293
邀请新用户注册赠送积分活动 666390