A robust underwater image enhancement algorithm

计算机科学 水下 图像(数学) 图像增强 人工智能 算法 计算机视觉 地质学 海洋学
作者
Kuo‐Jui Hu,Yi-Tsung Pan,Liwei Jiang,Sin-Der Lee,Sheng-Long Kao
出处
期刊:The Journal of Supercomputing [Springer Science+Business Media]
卷期号:81 (1)
标识
DOI:10.1007/s11227-024-06719-0
摘要

Capturing clear images in underwater environments is a major challenge in marine engineering. There are many issues to consider in obtaining clear underwater images such as climate, environment, and human factors. The most important reasons are the atomization effect caused by dispersion and the color cast caused by inconsistent energy attenuation of each wavelength when light propagates in water. Recently, deep learning technology has shown impressive performance on underwater image enhancement. The deep learning-based methods apply to the underwater image enhancement tasks. We propose a deep learning model for inferring a degradation model to further improve image dynamic range through a network-guided underwater image enhancement network architecture with multicolor space embedding and convolutional media transfer, fixed an issue with limited dynamic range and brightness in underwater images. Quantitative and qualitative results show that our network performs relatively well in the Underwater Image Enhancement Benchmark (UIEB) [7] dataset compared to other recent methods, and is expected to be applied to different types of underwater work and environments in the future and reduce the degradation problems that often occur with underwater images. The acquisition of high-fidelity imagery in subaqueous environments presents significant technical challenges in marine engineering, encompassing a complex interplay of climatological variables, environmental parameters, and anthropogenic factors. Primary impediments to image clarity comprise the atomization phenomenon induced by optical scattering and chromatic distortion resulting from wavelength-dependent energy attenuation in aqueous media. The procurement of high-resolution underwater imagery is fundamental to numerous scientific applications, including marine biological research, autonomous underwater robotics, and environmental surveillance systems, where precise visual data acquisition substantially augments analytical efficacy. Contemporary developments in deep learning architectures have exhibited remarkable potential for enhancing underwater image quality. In response to these challenges, we present a novel deep learning framework that derives an empirical degradation model, utilizing a network-guided enhancement architecture incorporating multicolor space embedding and convolutional media transfer methodologies to optimize image dynamic range. This methodological approach specifically addresses the limitations in luminance distribution and dynamic range characteristics inherent in subsea imagery. Empirical evaluation of our architectural framework on the standardized Underwater Image Enhancement Benchmark (UIEB) [7] dataset demonstrates statistically significant performance improvements over contemporary methodologies, suggesting broad applicability across diverse submarine environments for mitigating common degradation phenomena.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
TianlangPan发布了新的文献求助10
1秒前
1秒前
小文完成签到,获得积分10
1秒前
Happyness应助颜凡桃采纳,获得10
2秒前
Lemon_Lei关注了科研通微信公众号
3秒前
sdniuidifod完成签到,获得积分10
3秒前
Lin完成签到 ,获得积分10
3秒前
浮云完成签到,获得积分10
3秒前
3秒前
Wei驳回了李健应助
4秒前
wy发布了新的文献求助10
5秒前
852应助S77采纳,获得10
5秒前
无心的平蝶完成签到,获得积分10
5秒前
啦啦啦完成签到 ,获得积分10
5秒前
万能图书馆应助藿香采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
samuel发布了新的文献求助10
7秒前
TianlangPan完成签到,获得积分10
8秒前
阔达的孤丝完成签到,获得积分10
9秒前
lily发布了新的文献求助10
10秒前
欣喜靖发布了新的文献求助10
11秒前
11秒前
亮总完成签到,获得积分10
11秒前
一只科研狗完成签到,获得积分10
11秒前
12秒前
12秒前
科研通AI2S应助晚风采纳,获得10
12秒前
一手灵魂完成签到,获得积分10
12秒前
14秒前
14秒前
jcy完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
17秒前
油条发布了新的文献求助10
18秒前
Zhaoyuemeng完成签到 ,获得积分10
18秒前
英俊绝义发布了新的文献求助10
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126