A robust underwater image enhancement algorithm

计算机科学 水下 图像(数学) 图像增强 人工智能 算法 计算机视觉 地质学 海洋学
作者
Kuo‐Jui Hu,Yi-Tsung Pan,Liwei Jiang,Sin-Der Lee,Sheng-Long Kao
出处
期刊:The Journal of Supercomputing [Springer Nature]
卷期号:81 (1)
标识
DOI:10.1007/s11227-024-06719-0
摘要

Capturing clear images in underwater environments is a major challenge in marine engineering. There are many issues to consider in obtaining clear underwater images such as climate, environment, and human factors. The most important reasons are the atomization effect caused by dispersion and the color cast caused by inconsistent energy attenuation of each wavelength when light propagates in water. Recently, deep learning technology has shown impressive performance on underwater image enhancement. The deep learning-based methods apply to the underwater image enhancement tasks. We propose a deep learning model for inferring a degradation model to further improve image dynamic range through a network-guided underwater image enhancement network architecture with multicolor space embedding and convolutional media transfer, fixed an issue with limited dynamic range and brightness in underwater images. Quantitative and qualitative results show that our network performs relatively well in the Underwater Image Enhancement Benchmark (UIEB) [7] dataset compared to other recent methods, and is expected to be applied to different types of underwater work and environments in the future and reduce the degradation problems that often occur with underwater images. The acquisition of high-fidelity imagery in subaqueous environments presents significant technical challenges in marine engineering, encompassing a complex interplay of climatological variables, environmental parameters, and anthropogenic factors. Primary impediments to image clarity comprise the atomization phenomenon induced by optical scattering and chromatic distortion resulting from wavelength-dependent energy attenuation in aqueous media. The procurement of high-resolution underwater imagery is fundamental to numerous scientific applications, including marine biological research, autonomous underwater robotics, and environmental surveillance systems, where precise visual data acquisition substantially augments analytical efficacy. Contemporary developments in deep learning architectures have exhibited remarkable potential for enhancing underwater image quality. In response to these challenges, we present a novel deep learning framework that derives an empirical degradation model, utilizing a network-guided enhancement architecture incorporating multicolor space embedding and convolutional media transfer methodologies to optimize image dynamic range. This methodological approach specifically addresses the limitations in luminance distribution and dynamic range characteristics inherent in subsea imagery. Empirical evaluation of our architectural framework on the standardized Underwater Image Enhancement Benchmark (UIEB) [7] dataset demonstrates statistically significant performance improvements over contemporary methodologies, suggesting broad applicability across diverse submarine environments for mitigating common degradation phenomena.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wowowowowu完成签到 ,获得积分10
刚刚
刚刚
刚刚
好晒发布了新的文献求助10
1秒前
3秒前
勤奋旭尧完成签到,获得积分10
3秒前
忧郁如柏完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
6秒前
高贵觅风发布了新的文献求助30
7秒前
7秒前
水果完成签到,获得积分10
8秒前
化学小学生给化学小学生的求助进行了留言
8秒前
郁金香发布了新的文献求助10
9秒前
小如要努力完成签到,获得积分10
10秒前
汪宇发布了新的文献求助10
10秒前
CipherSage应助畅快的冷安采纳,获得10
10秒前
11秒前
小古完成签到,获得积分10
11秒前
dlwlrma发布了新的文献求助10
12秒前
Renaissance完成签到 ,获得积分10
12秒前
12秒前
辣椒完成签到 ,获得积分10
12秒前
无心的小霸王完成签到 ,获得积分10
12秒前
yjy123发布了新的文献求助10
13秒前
MrWang完成签到,获得积分10
14秒前
chenzhi发布了新的文献求助10
15秒前
BowieHuang应助LONGzhi采纳,获得10
16秒前
16秒前
赵一完成签到,获得积分10
16秒前
科研通AI6.1应助通~采纳,获得10
16秒前
赘婿应助XylonYu采纳,获得10
17秒前
18秒前
天天快乐应助Mcarry采纳,获得10
20秒前
齐小齐完成签到,获得积分10
20秒前
糖醋里脊加醋完成签到,获得积分10
20秒前
懦弱的易绿完成签到,获得积分10
21秒前
烟花应助chenzhi采纳,获得10
21秒前
xuan给xuan的求助进行了留言
21秒前
kdfdds发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741705
求助须知:如何正确求助?哪些是违规求助? 5403758
关于积分的说明 15343201
捐赠科研通 4883272
什么是DOI,文献DOI怎么找? 2624986
邀请新用户注册赠送积分活动 1573801
关于科研通互助平台的介绍 1530722