A robust underwater image enhancement algorithm

计算机科学 水下 图像(数学) 图像增强 人工智能 算法 计算机视觉 地质学 海洋学
作者
Kuo‐Jui Hu,Yi-Tsung Pan,Liwei Jiang,Sin-Der Lee,Sheng-Long Kao
出处
期刊:The Journal of Supercomputing [Springer Nature]
卷期号:81 (1)
标识
DOI:10.1007/s11227-024-06719-0
摘要

Capturing clear images in underwater environments is a major challenge in marine engineering. There are many issues to consider in obtaining clear underwater images such as climate, environment, and human factors. The most important reasons are the atomization effect caused by dispersion and the color cast caused by inconsistent energy attenuation of each wavelength when light propagates in water. Recently, deep learning technology has shown impressive performance on underwater image enhancement. The deep learning-based methods apply to the underwater image enhancement tasks. We propose a deep learning model for inferring a degradation model to further improve image dynamic range through a network-guided underwater image enhancement network architecture with multicolor space embedding and convolutional media transfer, fixed an issue with limited dynamic range and brightness in underwater images. Quantitative and qualitative results show that our network performs relatively well in the Underwater Image Enhancement Benchmark (UIEB) [7] dataset compared to other recent methods, and is expected to be applied to different types of underwater work and environments in the future and reduce the degradation problems that often occur with underwater images. The acquisition of high-fidelity imagery in subaqueous environments presents significant technical challenges in marine engineering, encompassing a complex interplay of climatological variables, environmental parameters, and anthropogenic factors. Primary impediments to image clarity comprise the atomization phenomenon induced by optical scattering and chromatic distortion resulting from wavelength-dependent energy attenuation in aqueous media. The procurement of high-resolution underwater imagery is fundamental to numerous scientific applications, including marine biological research, autonomous underwater robotics, and environmental surveillance systems, where precise visual data acquisition substantially augments analytical efficacy. Contemporary developments in deep learning architectures have exhibited remarkable potential for enhancing underwater image quality. In response to these challenges, we present a novel deep learning framework that derives an empirical degradation model, utilizing a network-guided enhancement architecture incorporating multicolor space embedding and convolutional media transfer methodologies to optimize image dynamic range. This methodological approach specifically addresses the limitations in luminance distribution and dynamic range characteristics inherent in subsea imagery. Empirical evaluation of our architectural framework on the standardized Underwater Image Enhancement Benchmark (UIEB) [7] dataset demonstrates statistically significant performance improvements over contemporary methodologies, suggesting broad applicability across diverse submarine environments for mitigating common degradation phenomena.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_R2D2完成签到,获得积分10
2秒前
konya发布了新的文献求助10
3秒前
吴念完成签到,获得积分10
3秒前
MMM完成签到,获得积分10
4秒前
皮凡发布了新的文献求助10
4秒前
5秒前
w0304hf发布了新的文献求助10
5秒前
lili发布了新的文献求助10
5秒前
无花果应助将个烂就采纳,获得10
5秒前
45发布了新的文献求助30
7秒前
Nana发布了新的文献求助10
7秒前
7秒前
yufancy02发布了新的文献求助10
10秒前
科研通AI6应助鱼鱼鱼采纳,获得10
10秒前
酷波er应助难过含烟采纳,获得10
10秒前
UHPC完成签到,获得积分10
11秒前
忽而今夏发布了新的文献求助30
11秒前
12秒前
12秒前
fm发布了新的文献求助10
12秒前
拼搏靖巧发布了新的文献求助10
13秒前
星star完成签到 ,获得积分10
14秒前
djbj2022发布了新的文献求助10
14秒前
华仔应助什么什么哇偶采纳,获得10
15秒前
16秒前
SisiZheng发布了新的文献求助10
17秒前
陈祥薇是大聪明完成签到 ,获得积分10
17秒前
17秒前
18秒前
落木发布了新的文献求助10
19秒前
19秒前
l123完成签到 ,获得积分10
19秒前
kk99123应助dtmdg采纳,获得10
20秒前
缥缈怀绿完成签到 ,获得积分10
20秒前
20秒前
L外驴尔X发布了新的文献求助10
21秒前
lunar完成签到 ,获得积分10
21秒前
劳伦斯完成签到 ,获得积分10
22秒前
SisiZheng完成签到,获得积分20
23秒前
23秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930