A robust underwater image enhancement algorithm

计算机科学 水下 图像(数学) 图像增强 人工智能 算法 计算机视觉 地质学 海洋学
作者
Kuo‐Jui Hu,Yi-Tsung Pan,Liwei Jiang,Sin-Der Lee,Sheng-Long Kao
出处
期刊:The Journal of Supercomputing [Springer Science+Business Media]
卷期号:81 (1)
标识
DOI:10.1007/s11227-024-06719-0
摘要

Capturing clear images in underwater environments is a major challenge in marine engineering. There are many issues to consider in obtaining clear underwater images such as climate, environment, and human factors. The most important reasons are the atomization effect caused by dispersion and the color cast caused by inconsistent energy attenuation of each wavelength when light propagates in water. Recently, deep learning technology has shown impressive performance on underwater image enhancement. The deep learning-based methods apply to the underwater image enhancement tasks. We propose a deep learning model for inferring a degradation model to further improve image dynamic range through a network-guided underwater image enhancement network architecture with multicolor space embedding and convolutional media transfer, fixed an issue with limited dynamic range and brightness in underwater images. Quantitative and qualitative results show that our network performs relatively well in the Underwater Image Enhancement Benchmark (UIEB) [7] dataset compared to other recent methods, and is expected to be applied to different types of underwater work and environments in the future and reduce the degradation problems that often occur with underwater images. The acquisition of high-fidelity imagery in subaqueous environments presents significant technical challenges in marine engineering, encompassing a complex interplay of climatological variables, environmental parameters, and anthropogenic factors. Primary impediments to image clarity comprise the atomization phenomenon induced by optical scattering and chromatic distortion resulting from wavelength-dependent energy attenuation in aqueous media. The procurement of high-resolution underwater imagery is fundamental to numerous scientific applications, including marine biological research, autonomous underwater robotics, and environmental surveillance systems, where precise visual data acquisition substantially augments analytical efficacy. Contemporary developments in deep learning architectures have exhibited remarkable potential for enhancing underwater image quality. In response to these challenges, we present a novel deep learning framework that derives an empirical degradation model, utilizing a network-guided enhancement architecture incorporating multicolor space embedding and convolutional media transfer methodologies to optimize image dynamic range. This methodological approach specifically addresses the limitations in luminance distribution and dynamic range characteristics inherent in subsea imagery. Empirical evaluation of our architectural framework on the standardized Underwater Image Enhancement Benchmark (UIEB) [7] dataset demonstrates statistically significant performance improvements over contemporary methodologies, suggesting broad applicability across diverse submarine environments for mitigating common degradation phenomena.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海的蓝色是水完成签到,获得积分20
刚刚
天天快乐应助明天过后采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
所所应助吴真好采纳,获得10
2秒前
乐观小之应助wogua采纳,获得10
2秒前
隐形曼青应助wogua采纳,获得10
2秒前
3秒前
清脆惜寒应助Wang采纳,获得30
3秒前
标致乐双发布了新的文献求助10
4秒前
Catalina_S应助太阳采纳,获得20
4秒前
华仔应助刘桑桑采纳,获得10
4秒前
5秒前
6秒前
深情安青应助123456采纳,获得10
6秒前
清爽千亦完成签到 ,获得积分10
6秒前
6秒前
周周完成签到 ,获得积分10
7秒前
读书妖精文亭逐完成签到,获得积分10
7秒前
7秒前
管歌发布了新的文献求助10
7秒前
leez完成签到,获得积分10
8秒前
8秒前
9秒前
WTT发布了新的文献求助10
9秒前
9秒前
笑点低的碧琴完成签到,获得积分10
9秒前
9秒前
9秒前
复杂听筠完成签到 ,获得积分10
10秒前
只是个昵称完成签到,获得积分20
10秒前
成就萤完成签到,获得积分10
10秒前
zihaolee完成签到 ,获得积分10
11秒前
11秒前
及禾发布了新的文献求助10
11秒前
WQQ完成签到,获得积分10
12秒前
大胆隶发布了新的文献求助10
12秒前
许子健发布了新的文献求助10
13秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646