Development of a Deep Learning Tool to Support the Assessment of Thyroid Follicular Cell Hypertrophy in the Rat

甲状腺 卵泡期 医学 病理 肌肉肥大 滤泡细胞 内分泌学
作者
Stuart W. Naylor,Elizabeth F. McInnes,James Alibhai,S. B. Burgess,James Baily
出处
期刊:Toxicologic Pathology [SAGE]
标识
DOI:10.1177/01926233241309328
摘要

Thyroid tissue is sensitive to the effects of endocrine disrupting substances, and this represents a significant health concern. Histopathological analysis of tissue sections of the rat thyroid gland remains the gold standard for the evaluation for agrochemical effects on the thyroid. However, there is a high degree of variability in the appearance of the rat thyroid gland, and toxicologic pathologists often struggle to decide on and consistently apply a threshold for recording low-grade thyroid follicular hypertrophy. This research project developed a deep learning image analysis solution that provides a quantitative score based on the morphological measurements of individual follicles that can be integrated into the standard pathology workflow. To achieve this, a U-Net convolutional deep learning neural network was used that not just identifies the various tissue components but also delineates individual follicles. Further steps to process the raw individual follicle data were developed using empirical models optimized to produce thyroid activity scores that were shown to be superior to the mean epithelial area approach when compared with pathologists' scores. These scores can be used for pathologist decision support using appropriate statistical methods to assess the presence or absence of low-grade thyroid hypertrophy at the group level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc发布了新的文献求助10
刚刚
华仔应助RJB采纳,获得10
刚刚
wen完成签到,获得积分20
1秒前
彭于晏应助动人的安柏采纳,获得10
1秒前
神说要有光完成签到,获得积分10
1秒前
科研通AI2S应助zhutier采纳,获得10
2秒前
周冯雪完成签到 ,获得积分10
2秒前
科研通AI6应助炙热晓露采纳,获得30
3秒前
囡囡发布了新的文献求助10
3秒前
devil完成签到,获得积分20
4秒前
歪歪比比完成签到,获得积分10
4秒前
科研通AI6应助vvvg采纳,获得10
5秒前
科研通AI2S应助幽默刀儿匠采纳,获得10
5秒前
传奇3应助柳炳采纳,获得10
5秒前
6秒前
fenghuo发布了新的文献求助10
6秒前
我是老大应助啦啦啦采纳,获得10
6秒前
西西道客完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
cc完成签到,获得积分10
8秒前
迷惘的桃花给迷惘的桃花的求助进行了留言
8秒前
9秒前
9秒前
11秒前
认真秋双发布了新的文献求助10
11秒前
李健的小迷弟应助石头采纳,获得10
11秒前
Andy发布了新的文献求助10
12秒前
神勇友易完成签到,获得积分10
13秒前
小童完成签到,获得积分20
13秒前
陈住气发布了新的文献求助10
14秒前
14秒前
Hello应助囡囡采纳,获得10
14秒前
NexusExplorer应助漠之梦采纳,获得10
15秒前
squirrel完成签到,获得积分10
15秒前
吴海发布了新的文献求助10
15秒前
酷酷箴发布了新的文献求助10
15秒前
Mercury完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5393830
求助须知:如何正确求助?哪些是违规求助? 4515135
关于积分的说明 14052862
捐赠科研通 4426320
什么是DOI,文献DOI怎么找? 2431294
邀请新用户注册赠送积分活动 1423445
关于科研通互助平台的介绍 1402505