Unsupervised Domain Adaptation Augmented by Mutually Boosted Attention for Semantic Segmentation of VHR Remote Sensing Images

计算机科学 判别式 卷积神经网络 分割 鉴别器 人工智能 特征(语言学) 领域(数学分析) 模式识别(心理学) 特征学习 域适应 分类器(UML) 电信 数学分析 语言学 哲学 数学 探测器
作者
Xianping Ma,Xiaokang Zhang,Zhiguo Wang,Man-On Pun
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:25
标识
DOI:10.1109/tgrs.2023.3240982
摘要

This work investigates unsupervised domain adaptation (UDA)-based semantic segmentation of very high-resolution (VHR) remote sensing (RS) images from different domains. Most existing UDA methods resort to generative adversarial networks (GANs) to cope with the domain shift problem caused by the discrepancies across different domains. However, these GAN-based UDA methods directly align two domains in the appearance, latent, or output space based on convolutional neural networks (CNNs), making them ineffective in exploiting long-range dependencies across the high-level feature maps derived from different domains. Unfortunately, such high-level features play an essential role in characterizing RS images with complex content. To circumvent this obstacle, a mutually boosted attention transformer (MBATrans) is proposed to capture cross-domain dependencies of semantic feature representations in this work. Compared with conventional UDA methods, MBATrans can significantly reduce domain discrepancies by capturing transferable features using global attention. More specifically, MBATrans utilizes a novel mutually boosted attention (MBA) module to align cross-domain feature maps while enhancing domain-general features. Furthermore, a novel GAN-based network with improved discriminative capability is devised by integrating an additional discriminator to learn domain-specific features. Extensive experiments on two large-scale VHR RS datasets, namely, International Society for Photogrammetry and Remote Sensing (ISPRS) Potsdam and Vaihingen, confirm the superior performance of the proposed MBATrans-augmented GAN (MBATA-GAN) architecture. The source code in this work is available at https://github.com/sstary/SSRS .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心完成签到,获得积分10
刚刚
zhangshaoqi完成签到,获得积分20
刚刚
奋斗的夜山完成签到 ,获得积分10
刚刚
田园牧歌完成签到,获得积分10
刚刚
明理从露完成签到 ,获得积分10
刚刚
白色风车完成签到,获得积分10
1秒前
飞秒激光啊完成签到,获得积分10
1秒前
闵夏完成签到,获得积分10
1秒前
RenHP完成签到,获得积分10
2秒前
小灰灰完成签到,获得积分10
2秒前
小呆瓜完成签到 ,获得积分10
3秒前
吃肉璇璇完成签到,获得积分10
3秒前
嗯啊完成签到,获得积分10
4秒前
wefor完成签到 ,获得积分10
4秒前
耶耶粘豆包完成签到,获得积分10
5秒前
5秒前
尽平梅愿完成签到,获得积分10
6秒前
今后应助科研通管家采纳,获得10
6秒前
YifanWang应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
ccc应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
Aile。完成签到,获得积分10
6秒前
liv应助科研通管家采纳,获得30
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
陈雷应助科研通管家采纳,获得10
6秒前
Jenny应助科研通管家采纳,获得10
6秒前
撒玉完成签到,获得积分10
7秒前
8秒前
chenchen完成签到,获得积分10
9秒前
透明的世界完成签到,获得积分10
9秒前
爱静静应助hailang820316采纳,获得10
10秒前
沉醉完成签到 ,获得积分10
10秒前
LL完成签到,获得积分10
10秒前
liu完成签到,获得积分10
11秒前
卡戎529完成签到 ,获得积分10
11秒前
奶糖最可爱完成签到,获得积分10
11秒前
937989656发布了新的文献求助10
11秒前
晨曦完成签到 ,获得积分10
12秒前
行毅文完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890