Multisource Information Fusion Network for Optical Remote Sensing Image Super-Resolution

计算机科学 人工智能 特征提取 图像融合 特征(语言学) 模式识别(心理学) 深度学习 人工神经网络 块(置换群论) 数据挖掘 图像(数学) 数学 哲学 语言学 几何学
作者
Mengyang Shi,Yesheng Gao,Lin Chen,Xingzhao Liu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 3805-3818 被引量:3
标识
DOI:10.1109/jstars.2023.3242039
摘要

The super-resolution algorithms based on deep learning can effectively increase optical remote sensing image (ORSI) details for further analysis tasks. Deep unfolding methods have been studied in recent years to bridge the gap between optimization-based and learning-based methods, which can take good advantage of the prior knowledge. However, these unfolding methods usually ignore the utilization of intermediate network features between different iteration stages, thereby limiting the performance of super-resolution results. We propose a multi-source information fusion network (MSFNet) for ORSI super-resolution to address this problem. We mainly consider three strategies to enhance the image super-resolution performance, including feature extraction strategy, information fusion strategy, and the structure of the unfolding network. Firstly, image information of various scales is helpful for mining potential features of images for image super-resolution. Therefore, we introduce multi-scale implicit constraints to the objective function. Secondly, we unfold the optimization process into a neural network by alternating direction method of multipliers (ADMM). The network framework follows the ADMM method's iteration process. This unfolding strategy can effectively utilize the prior information for image reconstruction. Thirdly, we propose a row-column decoupling Transformer module based on this unfolding framework for feature fusion. Specifically, the row Transformer block completes the feature fusion of various scales, and the column Transformer block completes the feature fusion of various channels. The fused features are transmitted to the next iteration stage for feature enhancement. And this fusion strategy enables the network to focus on the global information of the features. We perform experiments on three remote sensing image datasets to fully demonstrate the algorithm's effectiveness. Experiment results show that the proposed algorithm can achieve better image reconstruction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
华仔应助fei采纳,获得100
2秒前
3秒前
小谷发布了新的文献求助10
5秒前
咚咚发布了新的文献求助10
7秒前
冷静访梦发布了新的文献求助10
7秒前
9秒前
舒心谷雪完成签到 ,获得积分10
9秒前
HarryYang发布了新的文献求助30
10秒前
zzt完成签到,获得积分10
10秒前
漂亮翠曼完成签到,获得积分20
11秒前
汉堡包应助寂寞的小夏采纳,获得10
11秒前
Mr.Left发布了新的文献求助10
12秒前
23发布了新的文献求助20
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
16秒前
锐哥发布了新的文献求助10
17秒前
17秒前
aa发布了新的文献求助10
17秒前
小谷完成签到,获得积分10
18秒前
高超完成签到,获得积分20
20秒前
21秒前
22秒前
李桥溪完成签到,获得积分10
23秒前
23秒前
zzt发布了新的文献求助10
24秒前
26秒前
大模型应助大白包子李采纳,获得10
26秒前
mrcle发布了新的文献求助10
27秒前
墨点完成签到 ,获得积分10
28秒前
xiaozhao发布了新的文献求助10
28秒前
28秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330178
求助须知:如何正确求助?哪些是违规求助? 2959781
关于积分的说明 8596907
捐赠科研通 2638194
什么是DOI,文献DOI怎么找? 1444196
科研通“疑难数据库(出版商)”最低求助积分说明 669063
邀请新用户注册赠送积分活动 656596