Learning Accurate Label-Specific Features From Partially Multilabeled Data

计算机科学 人工智能 特征选择 班级(哲学) 模式识别(心理学) 选择(遗传算法) 遮罩(插图) 特征(语言学) 集合(抽象数据类型) 多标签分类 基本事实 降维 机器学习 艺术 语言学 哲学 视觉艺术 程序设计语言
作者
Tiantian Xu,Yuanyuan Xu,Shiyu Yang,Binghao Li,Wenjie Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2023.3241921
摘要

Feature selection is an effective dimensionality reduction technique, which can speed up an algorithm and improve model performance such as predictive accuracy and result comprehensibility. The study of selecting label-specific features for each class label has attracted considerable attention since each class label might be determined by some inherent characteristics, where precise label information is required to guide label-specific feature selection. However, obtaining noise-free labels is quite difficult and impractical. In reality, each instance is often annotated by a candidate label set that comprises multiple ground-truth labels and other false-positive labels, termed partial multilabel (PML) learning scenario. Here, false-positive labels concealed in a candidate label set might induce the selection of false label-specific features while masking the intrinsic label correlations, which misleads the selection of relevant features and compromises the selection performance. To address this issue, a novel two-stage partial multilabel feature selection (PMLFS) approach is proposed, which elicits credible labels to guide accurate label-specific feature selection. First, the label confidence matrix is learned to help elicit ground-truth labels from the candidate label set via the label structure reconstruction strategy, each element of which indicates how likely a class label is ground truth. After that, based on distilled credible labels, a joint selection model, including label-specific feature learner and common feature learner, is designed to learn accurate label-specific features to each class label and common features for all class labels. Besides, label correlations are fused into the features selection process to facilitate the generation of an optimal feature subset. Extensive experimental results clearly validate the superiority of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
俞渝发布了新的文献求助30
1秒前
可爱的函函应助gdh采纳,获得10
2秒前
Ann发布了新的文献求助10
3秒前
4秒前
Minerva发布了新的文献求助10
4秒前
闪闪完成签到 ,获得积分10
5秒前
俞渝完成签到,获得积分20
11秒前
14秒前
14秒前
陈晨完成签到,获得积分10
16秒前
17秒前
小马甲应助wxyllxx采纳,获得10
17秒前
19秒前
麻薯头头发布了新的文献求助10
19秒前
20秒前
21秒前
Linyi发布了新的文献求助10
21秒前
mml发布了新的文献求助10
22秒前
琉璃苣应助LC采纳,获得10
25秒前
。。。完成签到,获得积分10
26秒前
26秒前
霖宸羽完成签到,获得积分10
29秒前
田様应助mml采纳,获得10
30秒前
奇奇吃面发布了新的文献求助10
30秒前
我是老大应助wxyllxx采纳,获得10
33秒前
七月不看海完成签到,获得积分10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
英姑应助科研通管家采纳,获得10
34秒前
36秒前
充电宝应助等待的道消采纳,获得10
37秒前
彭于晏应助麻薯头头采纳,获得10
37秒前
Li完成签到,获得积分10
38秒前
JJ发布了新的文献求助10
41秒前
yiyi131发布了新的文献求助10
41秒前
天真凡灵完成签到,获得积分10
41秒前
samuel完成签到,获得积分10
42秒前
43秒前
Jasper应助YY采纳,获得30
44秒前
科研通AI2S应助ccq采纳,获得10
46秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137575
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787428
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300110
科研通“疑难数据库(出版商)”最低求助积分说明 625813
版权声明 601023