Learning Accurate Label-Specific Features From Partially Multilabeled Data

计算机科学 人工智能 特征选择 班级(哲学) 模式识别(心理学) 选择(遗传算法) 遮罩(插图) 特征(语言学) 集合(抽象数据类型) 多标签分类 基本事实 降维 机器学习 艺术 语言学 哲学 视觉艺术 程序设计语言
作者
Tiantian Xu,Yuanyuan Xu,Shiyu Yang,Binghao Li,Wenjie Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2023.3241921
摘要

Feature selection is an effective dimensionality reduction technique, which can speed up an algorithm and improve model performance such as predictive accuracy and result comprehensibility. The study of selecting label-specific features for each class label has attracted considerable attention since each class label might be determined by some inherent characteristics, where precise label information is required to guide label-specific feature selection. However, obtaining noise-free labels is quite difficult and impractical. In reality, each instance is often annotated by a candidate label set that comprises multiple ground-truth labels and other false-positive labels, termed partial multilabel (PML) learning scenario. Here, false-positive labels concealed in a candidate label set might induce the selection of false label-specific features while masking the intrinsic label correlations, which misleads the selection of relevant features and compromises the selection performance. To address this issue, a novel two-stage partial multilabel feature selection (PMLFS) approach is proposed, which elicits credible labels to guide accurate label-specific feature selection. First, the label confidence matrix is learned to help elicit ground-truth labels from the candidate label set via the label structure reconstruction strategy, each element of which indicates how likely a class label is ground truth. After that, based on distilled credible labels, a joint selection model, including label-specific feature learner and common feature learner, is designed to learn accurate label-specific features to each class label and common features for all class labels. Besides, label correlations are fused into the features selection process to facilitate the generation of an optimal feature subset. Extensive experimental results clearly validate the superiority of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气的代云完成签到,获得积分10
1秒前
ding应助你在烦恼什么呢采纳,获得10
1秒前
loewy完成签到,获得积分10
2秒前
9秒前
跳跃祥发布了新的文献求助50
12秒前
领导范儿应助活力的夏蓉采纳,获得10
12秒前
科研通AI5应助小小怪将军采纳,获得10
14秒前
15秒前
zake完成签到,获得积分10
17秒前
西瓜完成签到,获得积分10
18秒前
fan完成签到,获得积分10
18秒前
zhou默完成签到,获得积分10
19秒前
wanci应助NXK采纳,获得30
22秒前
研团子完成签到,获得积分10
23秒前
23秒前
Guo发布了新的文献求助10
25秒前
25秒前
28秒前
29秒前
31秒前
Ki_Ayasato发布了新的文献求助30
32秒前
情怀应助what采纳,获得10
33秒前
33秒前
Lane_Crumus完成签到,获得积分10
34秒前
NXK发布了新的文献求助30
34秒前
zzz发布了新的文献求助10
35秒前
35秒前
psj完成签到,获得积分10
35秒前
37秒前
38秒前
41秒前
小苏打发布了新的文献求助10
41秒前
幸福果汁发布了新的文献求助10
42秒前
落后的凝梦完成签到 ,获得积分10
44秒前
能干夏波发布了新的文献求助10
45秒前
milan001发布了新的文献求助10
48秒前
51秒前
52秒前
拼搏奇异果完成签到,获得积分10
53秒前
科研通AI5应助zzz采纳,获得10
53秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738374
求助须知:如何正确求助?哪些是违规求助? 3281845
关于积分的说明 10026729
捐赠科研通 2998684
什么是DOI,文献DOI怎么找? 1645363
邀请新用户注册赠送积分活动 782749
科研通“疑难数据库(出版商)”最低求助积分说明 749901