You can get smaller: A lightweight self-activation convolution unit modified by transformer for fault diagnosis

稳健性(进化) 计算机科学 卷积神经网络 变压器 人工智能 算法 可靠性工程 电子工程 工程类 电压 电气工程 生物化学 基因 化学
作者
Hairui Fang,Jin Deng,DongSheng Chen,Wenjuan Jiang,Siyu Shao,Mingcong Tang,Jingjing Liu
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:55: 101890-101890 被引量:48
标识
DOI:10.1016/j.aei.2023.101890
摘要

The fault diagnosis methods based on convolutional neural network (CNN) have achieved many excellent results. However, owing to the deployment cost, numerous CNNs with large parameters are difficult to be directly applied to industrial practice. Therefore, this work aims to use lower parameters (order of magnitude is thousand) to complete the task of bearing fault diagnosis on the premise that the model has high-accuracy. To achieve this goal, a convolution unit modified by transformer was proposed, who is based upon the self-activation function, which makes the transformer and CNN organically integrated into a whole. Then, based on this unit, a series of novel lightweight diagnosis frameworks were proposed, named SANet. Finally, it was demonstrated that the proposed SANet can complete the high-accuracy diagnosis task with less than three thousand parameters and has strong robustness to noise (Average accuracy in various noise environments: 84.55%), and that SANet can achieve satisfactory results when there are few training samples (The number of samples of each category is 3 × 4), through four research cases. To sum up, based on this novel unit, we provide a series of lightweight frameworks with high-accuracy, strong robustness, and low sample demand, which is expected to promote the process of fault diagnosis technology from theoretical research to industrial practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aa发布了新的文献求助10
刚刚
领导范儿应助驰驰采纳,获得10
刚刚
Opse发布了新的文献求助200
1秒前
3秒前
3秒前
3秒前
5秒前
7秒前
7秒前
7秒前
喜羊羊发布了新的文献求助10
8秒前
zjh发布了新的文献求助10
8秒前
大罗完成签到,获得积分10
10秒前
华仔应助ffx采纳,获得10
10秒前
万能图书馆应助aa采纳,获得10
11秒前
11秒前
调研昵称发布了新的文献求助30
12秒前
直率的灵安完成签到,获得积分10
13秒前
Zyl完成签到 ,获得积分10
13秒前
驰驰发布了新的文献求助10
15秒前
16秒前
16秒前
18秒前
20秒前
lizzzzzz发布了新的文献求助10
21秒前
22秒前
clean发布了新的文献求助10
22秒前
无花果应助椰脑采纳,获得10
22秒前
行者完成签到,获得积分10
23秒前
23秒前
ffx发布了新的文献求助10
24秒前
25秒前
大方绿蕊发布了新的文献求助10
25秒前
25秒前
Lucas应助xxx采纳,获得10
26秒前
一点也不可爱完成签到,获得积分10
26秒前
27秒前
程瑞哲完成签到,获得积分10
28秒前
28秒前
慕青应助Missyang采纳,获得10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542875
求助须知:如何正确求助?哪些是违规求助? 3120166
关于积分的说明 9341799
捐赠科研通 2818206
什么是DOI,文献DOI怎么找? 1549434
邀请新用户注册赠送积分活动 722146
科研通“疑难数据库(出版商)”最低求助积分说明 712978