Pseudospin-selective Floquet band engineering in black phosphorus

弗洛奎特理论 物理 电子能带结构 带隙 凝聚态物理 半导体 量子力学 非线性系统
作者
Shaohua Zhou,Changhua Bao,Benshu Fan,Hui Zhou,Qixuan Gao,Haoyuan Zhong,Tianyun Lin,Hang Liu,Pu Yu,Peizhe Tang,Sheng Meng,Wenhui Duan,Shuyun Zhou
出处
期刊:Nature [Springer Nature]
卷期号:614 (7946): 75-80 被引量:69
标识
DOI:10.1038/s41586-022-05610-3
摘要

Time-periodic light field has emerged as a control knob for manipulating quantum states in solid-state materials, cold atoms and photonic systems via hybridization with photon-dressed Floquet states in the strong coupling limit, dubbed as Floquet engineering. Such interaction leads to tailored properties of quantum materials, for example, modifications of the topological properties of Dirac materials and modulation of the optical response. Despite extensive research interests over the past decade, there is no experimental evidence of momentum-resolved Floquet band engineering of semiconductors, which is a crucial step to extend Floquet engineering to a wide range of solid-state materials. Here, based on time- and angle-resolved photoemission spectroscopy measurements, we report experimental signatures of Floquet band engineering in a model semiconductor - black phosphorus. Upon near-resonance pumping at photon energy of 340 to 440 meV, a strong band renormalization is observed near the band edges. In particular, light-induced dynamical gap opening is resolved at the resonance points, which emerges simultaneously with the Floquet sidebands. Moreover, the band renormalization shows a strong selection rule favoring pump polarization along the armchair direction, suggesting pseudospin selectivity for the Floquet band engineering as enforced by the lattice symmetry. Our work demonstrates pseudospin-selective Floquet band engineering in black phosphorus, and provides important guiding principles for Floquet engineering of semiconductors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li完成签到,获得积分10
刚刚
1秒前
ononon发布了新的文献求助10
3秒前
3秒前
liu完成签到,获得积分10
5秒前
LWJ发布了新的文献求助10
6秒前
7秒前
大反应釜完成签到,获得积分10
7秒前
TT发布了新的文献求助10
10秒前
Jenny发布了新的文献求助10
12秒前
12秒前
完美凝竹发布了新的文献求助10
12秒前
我是站长才怪应助细腻沅采纳,获得10
13秒前
JG完成签到 ,获得积分10
13秒前
hhh完成签到,获得积分20
13秒前
科研通AI5应助想瘦的海豹采纳,获得10
14秒前
随性完成签到 ,获得积分10
14秒前
自由的信仰完成签到,获得积分10
15秒前
17秒前
18秒前
18秒前
夏夏发布了新的文献求助10
19秒前
打打应助Hangerli采纳,获得10
21秒前
完美凝竹完成签到,获得积分10
22秒前
zfzf0422发布了新的文献求助10
23秒前
蜘蛛道理完成签到 ,获得积分10
23秒前
冷傲迎梦发布了新的文献求助10
24秒前
852应助MEME采纳,获得10
24秒前
Godzilla发布了新的文献求助10
24秒前
大模型应助咕噜仔采纳,获得10
25秒前
蒋时晏应助pharmstudent采纳,获得30
25秒前
26秒前
忘羡222发布了新的文献求助20
27秒前
魏伯安发布了新的文献求助10
27秒前
28秒前
不爱吃糖完成签到,获得积分10
28秒前
29秒前
balabala发布了新的文献求助10
30秒前
睿123456完成签到,获得积分10
31秒前
此话当真完成签到,获得积分10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824