热致变色
材料科学
透射率
氢键
纳米颗粒
密度泛函理论
聚苯乙烯
化学工程
可见光谱
纳米技术
分子
聚合物
化学
光电子学
复合材料
有机化学
计算化学
工程类
作者
Xiuxian Zhao,Wei Yao,Junhua Sun,Jiayuan Yu,Jiachen Ma,Tongyao Liu,Yizhong Lu,Riming Hu,Xuchuan Jiang
标识
DOI:10.1016/j.cej.2023.141715
摘要
Vanadium dioxide (VO2) has attracted consideration because of its thermochromic performance in smart windows. However, the practical applications of VO2-based smart windows are seriously hindered by their low luminous transmittance (Tlum), poor solar modulation efficiency (ΔTsol), and the monotonous "brown-yellowish" color. This study aims at developing a newly reported metal complex [(C2H5)2NH2]2NiBr4 and its core–shell structure of [(C2H5)2NH2]2NiBr4@SiO2, combined with the thermochromic VO2 to enhance optical performance (Tlum and ΔTsol). Density Functional Theory (DFT) calculations indicate that the as-obtained metal complex is thermodynamically stable, and the weaker NH…Br hydrogen bond makes the complex possesses a lower phase transition temperature (TC = 57.6 °C) than the reported [(C2H5)2NH2]2NiCl4 (TC = 75.4 °C). In addition, it is found that the SiO2 shell can effectively inhibit the deliquescence of the [(C2H5)2NH2]2NiBr4 complex, and DFT calculations reveal that the oxygen of SiO2 can bond with the hydrogen of ammonium, thus the water molecules in the air cannot continue to react with the complex. Interestingly, the combination of [(C2H5)2NH2]2NiBr4@SiO2/Polystyrene film with VO2/Polyvinylbutyral film demonstrates exemplary solar modulation abilities (Tlum,low = 52.9 %, Tlum,high = 37.3 %, ΔTsol = 25.7 %, Haze = 26.5 %), 2.1 times better than that of VO2/Polyvinylbutyral film (Tlum,low = 55.9 %, Tlum,high = 54.2 %, ΔTsol = 12.4 %, Haze = 17.2 %). Moreover, the color of VO2-based film changes from light-brown (at low temperature) to green (at high temperature).
科研通智能强力驱动
Strongly Powered by AbleSci AI