Heart sound classification based on equal scale frequency cepstral coefficients and deep learning

Mel倒谱 计算机科学 稳健性(进化) 倒谱 卷积神经网络 特征提取 心音 人工智能 模式识别(心理学) 滤波器(信号处理) 特征(语言学) 人工神经网络 集合(抽象数据类型) 语音识别 计算机视觉 医学 生物化学 化学 语言学 哲学 内科学 基因 程序设计语言
作者
Xiaohong Chen,Hongru Li,Youhe Huang,Weiwei Han,Xia Yu,Pengfei Zhang,Rui Tao
出处
期刊:Biomedizinische Technik [De Gruyter]
卷期号:68 (3): 285-295 被引量:1
标识
DOI:10.1515/bmt-2021-0254
摘要

Heart diseases represent a serious medical condition that can be fatal. Therefore, it is critical to investigate the measures of its early prevention. The Mel-scale frequency cepstral coefficients (MFCC) feature has been widely used in the early diagnosis of heart abnormity and achieved promising results. During feature extraction, the Mel-scale triangular overlapping filter set is applied, which makes the frequency response more in line with the human auditory property. However, the frequency of the heart sound signals has no specific relationship with the human auditory system, which may not be suitable for processing of heart sound signals. To overcome this issue and obtain a more objective feature that can better adapt to practical use, in this work, we propose an equal scale frequency cepstral coefficients (EFCC) feature based on replacing the Mel-scale filter set with a set of equally spaced triangular overlapping filters. We further designed classifiers combining convolutional neural network (CNN), recurrent neural network (RNN) and random forest (RF) layers, which can extract both the spatial and temporal information of the input features. We evaluated the proposed algorithm on our database and the PhysioNet Computational Cardiology (CinC) 2016 Challenge Database. Results from ten-fold cross-validation reveal that the EFCC-based features show considerably better performance and robustness than the MFCC-based features on the task of classifying heart sounds from novel patients. Our algorithm can be further used in wearable medical devices to monitor the heart status of patients in real time with high precision, which is of great clinical importance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xyZ完成签到,获得积分10
刚刚
1秒前
1秒前
共享精神应助研友_LJGoXn采纳,获得10
1秒前
酷波er应助yuilcl采纳,获得10
1秒前
1秒前
2339822272发布了新的文献求助10
1秒前
2秒前
晚风cc留下了新的社区评论
2秒前
开朗青槐发布了新的文献求助20
2秒前
3秒前
berg发布了新的文献求助10
3秒前
任吉喆完成签到 ,获得积分10
3秒前
Akim应助stella采纳,获得10
3秒前
cya发布了新的文献求助10
5秒前
Mira完成签到,获得积分10
5秒前
5秒前
搜集达人应助裴秀智采纳,获得30
6秒前
Steven发布了新的文献求助10
6秒前
7秒前
明明明发布了新的文献求助10
7秒前
JamesPei应助ccyy采纳,获得10
7秒前
棋士发布了新的文献求助10
7秒前
美好易完成签到,获得积分10
8秒前
科研通AI2S应助枫溪采纳,获得10
8秒前
完美世界应助闫永洁采纳,获得10
8秒前
刁弘睿完成签到,获得积分10
9秒前
hq发布了新的文献求助10
9秒前
深情安青应助猜不猜不采纳,获得10
9秒前
田园镇完成签到 ,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助30
9秒前
宋真玉完成签到,获得积分10
10秒前
完美世界应助cg666采纳,获得10
11秒前
猫猫无敌发布了新的文献求助10
12秒前
BowieHuang应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425