Heart sound classification based on equal scale frequency cepstral coefficients and deep learning

Mel倒谱 计算机科学 稳健性(进化) 倒谱 卷积神经网络 特征提取 心音 人工智能 模式识别(心理学) 滤波器(信号处理) 特征(语言学) 人工神经网络 集合(抽象数据类型) 语音识别 计算机视觉 医学 哲学 内科学 基因 化学 程序设计语言 生物化学 语言学
作者
Xiaohong Chen,Hongru Li,Youhe Huang,Weiwei Han,Xia Yu,Pengfei Zhang,Rui Tao
出处
期刊:Biomedizinische Technik [De Gruyter]
卷期号:68 (3): 285-295 被引量:1
标识
DOI:10.1515/bmt-2021-0254
摘要

Heart diseases represent a serious medical condition that can be fatal. Therefore, it is critical to investigate the measures of its early prevention. The Mel-scale frequency cepstral coefficients (MFCC) feature has been widely used in the early diagnosis of heart abnormity and achieved promising results. During feature extraction, the Mel-scale triangular overlapping filter set is applied, which makes the frequency response more in line with the human auditory property. However, the frequency of the heart sound signals has no specific relationship with the human auditory system, which may not be suitable for processing of heart sound signals. To overcome this issue and obtain a more objective feature that can better adapt to practical use, in this work, we propose an equal scale frequency cepstral coefficients (EFCC) feature based on replacing the Mel-scale filter set with a set of equally spaced triangular overlapping filters. We further designed classifiers combining convolutional neural network (CNN), recurrent neural network (RNN) and random forest (RF) layers, which can extract both the spatial and temporal information of the input features. We evaluated the proposed algorithm on our database and the PhysioNet Computational Cardiology (CinC) 2016 Challenge Database. Results from ten-fold cross-validation reveal that the EFCC-based features show considerably better performance and robustness than the MFCC-based features on the task of classifying heart sounds from novel patients. Our algorithm can be further used in wearable medical devices to monitor the heart status of patients in real time with high precision, which is of great clinical importance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
琉璃发布了新的文献求助10
5秒前
一叶知秋应助phl采纳,获得10
6秒前
科研通AI5应助随遇而安采纳,获得10
6秒前
科研小lese发布了新的文献求助10
7秒前
华仔应助小洪俊熙采纳,获得10
9秒前
任慧晶发布了新的文献求助10
9秒前
10秒前
李健应助TT2022采纳,获得10
10秒前
mermaid完成签到,获得积分10
11秒前
Rainbow完成签到,获得积分10
11秒前
叮叮叮完成签到 ,获得积分10
11秒前
哭泣愚志完成签到 ,获得积分10
12秒前
哦豁应助又是一年采纳,获得40
12秒前
芳心纵火犯完成签到,获得积分10
12秒前
13秒前
fayol发布了新的文献求助10
15秒前
洁白的故人完成签到,获得积分10
16秒前
16秒前
17秒前
Evander完成签到,获得积分10
17秒前
CHINA76发布了新的文献求助10
18秒前
20秒前
我是老大应助狂奔的蜗牛采纳,获得10
20秒前
DS发布了新的文献求助10
20秒前
20秒前
科研通AI5应助科研小lese采纳,获得10
21秒前
22秒前
13508104971发布了新的文献求助10
23秒前
科研通AI6应助GNY采纳,获得10
27秒前
浮游应助waca采纳,获得10
27秒前
30秒前
CHINA76完成签到,获得积分10
33秒前
Jasper应助DS采纳,获得10
34秒前
科研通AI5应助xiao-lei采纳,获得10
35秒前
37秒前
37秒前
39秒前
39秒前
鱼鱼发布了新的文献求助20
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1500
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123717
求助须知:如何正确求助?哪些是违规求助? 4328095
关于积分的说明 13486321
捐赠科研通 4162431
什么是DOI,文献DOI怎么找? 2281452
邀请新用户注册赠送积分活动 1282864
关于科研通互助平台的介绍 1221964