Heart sound classification based on equal scale frequency cepstral coefficients and deep learning

Mel倒谱 计算机科学 稳健性(进化) 倒谱 卷积神经网络 特征提取 心音 人工智能 模式识别(心理学) 滤波器(信号处理) 特征(语言学) 人工神经网络 集合(抽象数据类型) 语音识别 计算机视觉 医学 生物化学 化学 语言学 哲学 内科学 基因 程序设计语言
作者
Xiaohong Chen,Hongru Li,Youhe Huang,Weiwei Han,Xia Yu,Pengfei Zhang,Rui Tao
出处
期刊:Biomedizinische Technik [De Gruyter]
卷期号:68 (3): 285-295 被引量:1
标识
DOI:10.1515/bmt-2021-0254
摘要

Heart diseases represent a serious medical condition that can be fatal. Therefore, it is critical to investigate the measures of its early prevention. The Mel-scale frequency cepstral coefficients (MFCC) feature has been widely used in the early diagnosis of heart abnormity and achieved promising results. During feature extraction, the Mel-scale triangular overlapping filter set is applied, which makes the frequency response more in line with the human auditory property. However, the frequency of the heart sound signals has no specific relationship with the human auditory system, which may not be suitable for processing of heart sound signals. To overcome this issue and obtain a more objective feature that can better adapt to practical use, in this work, we propose an equal scale frequency cepstral coefficients (EFCC) feature based on replacing the Mel-scale filter set with a set of equally spaced triangular overlapping filters. We further designed classifiers combining convolutional neural network (CNN), recurrent neural network (RNN) and random forest (RF) layers, which can extract both the spatial and temporal information of the input features. We evaluated the proposed algorithm on our database and the PhysioNet Computational Cardiology (CinC) 2016 Challenge Database. Results from ten-fold cross-validation reveal that the EFCC-based features show considerably better performance and robustness than the MFCC-based features on the task of classifying heart sounds from novel patients. Our algorithm can be further used in wearable medical devices to monitor the heart status of patients in real time with high precision, which is of great clinical importance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助沙拉酱采纳,获得10
1秒前
1秒前
ding应助yunmeng采纳,获得10
1秒前
1秒前
背后的雪卉应助Saluzi采纳,获得10
1秒前
阳光之柔完成签到,获得积分10
1秒前
David发布了新的文献求助10
2秒前
睡呀发布了新的文献求助20
3秒前
天天快乐应助墨子白采纳,获得30
4秒前
思源应助甘地采纳,获得10
4秒前
4秒前
5秒前
小李关注了科研通微信公众号
5秒前
思君会于斑斓完成签到,获得积分10
5秒前
5秒前
lu发布了新的文献求助10
6秒前
6秒前
在水一方应助默默善愁采纳,获得10
7秒前
科研通AI6应助优雅的笑阳采纳,获得10
8秒前
8秒前
西瓜妹发布了新的文献求助10
8秒前
张叶卓完成签到,获得积分20
8秒前
9秒前
9秒前
10秒前
天天快乐应助Janus采纳,获得10
11秒前
12秒前
sinon完成签到,获得积分10
13秒前
13秒前
外向樱发布了新的文献求助10
14秒前
wynne完成签到 ,获得积分10
14秒前
忧伤的桐应助WWW采纳,获得10
14秒前
15秒前
buno应助skr采纳,获得10
15秒前
诡瞳GT完成签到 ,获得积分10
15秒前
领导范儿应助苏佳韩采纳,获得10
15秒前
16秒前
congcong发布了新的文献求助30
16秒前
墨子白发布了新的文献求助30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588804
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14788829
捐赠科研通 4626418
什么是DOI,文献DOI怎么找? 2531970
邀请新用户注册赠送积分活动 1500530
关于科研通互助平台的介绍 1468329