Heart sound classification based on equal scale frequency cepstral coefficients and deep learning

Mel倒谱 计算机科学 稳健性(进化) 倒谱 卷积神经网络 特征提取 心音 人工智能 模式识别(心理学) 滤波器(信号处理) 特征(语言学) 人工神经网络 集合(抽象数据类型) 语音识别 计算机视觉 医学 生物化学 化学 语言学 哲学 内科学 基因 程序设计语言
作者
Xiaoqing Chen,Hongru Li,Youhe Huang,Weiwei Han,Yu Xia,Pengfei Zhang,Rui Tao
出处
期刊:Biomedizinische Technik [De Gruyter]
标识
DOI:10.1515/bmt-2021-0254
摘要

Abstract Heart diseases represent a serious medical condition that can be fatal. Therefore, it is critical to investigate the measures of its early prevention. The Mel-scale frequency cepstral coefficients (MFCC) feature has been widely used in the early diagnosis of heart abnormity and achieved promising results. During feature extraction, the Mel-scale triangular overlapping filter set is applied, which makes the frequency response more in line with the human auditory property. However, the frequency of the heart sound signals has no specific relationship with the human auditory system, which may not be suitable for processing of heart sound signals. To overcome this issue and obtain a more objective feature that can better adapt to practical use, in this work, we propose an equal scale frequency cepstral coefficients (EFCC) feature based on replacing the Mel-scale filter set with a set of equally spaced triangular overlapping filters. We further designed classifiers combining convolutional neural network (CNN), recurrent neural network (RNN) and random forest (RF) layers, which can extract both the spatial and temporal information of the input features. We evaluated the proposed algorithm on our database and the PhysioNet Computational Cardiology (CinC) 2016 Challenge Database. Results from ten-fold cross-validation reveal that the EFCC-based features show considerably better performance and robustness than the MFCC-based features on the task of classifying heart sounds from novel patients. Our algorithm can be further used in wearable medical devices to monitor the heart status of patients in real time with high precision, which is of great clinical importance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鸣笛应助满意的世界采纳,获得50
1秒前
Francois给Francois的求助进行了留言
1秒前
范白白发布了新的文献求助30
1秒前
科研CY完成签到 ,获得积分10
1秒前
3秒前
柚子完成签到,获得积分10
5秒前
cassie发布了新的文献求助10
5秒前
xiaoyaoswim完成签到,获得积分10
5秒前
鸣笛应助李李李采纳,获得10
6秒前
6秒前
跳跃的水蓝完成签到 ,获得积分10
6秒前
7秒前
9秒前
nananan发布了新的文献求助10
9秒前
汉堡包应助Xiaojiu采纳,获得10
9秒前
柚子发布了新的文献求助10
10秒前
科目三应助garrick采纳,获得10
11秒前
11秒前
QYPANG发布了新的文献求助10
12秒前
笨笨豌豆完成签到 ,获得积分10
12秒前
14秒前
急诊守夜人完成签到,获得积分10
16秒前
酷波er应助李昕123采纳,获得10
17秒前
111发布了新的文献求助10
17秒前
黄花花完成签到,获得积分10
18秒前
18秒前
爆米花应助研友_nVWP2Z采纳,获得10
18秒前
人言可畏完成签到 ,获得积分10
18秒前
SemiConduAG发布了新的文献求助30
19秒前
Ava应助北陆小猫采纳,获得10
21秒前
21秒前
xss发布了新的文献求助10
23秒前
25秒前
科研达人发布了新的文献求助10
26秒前
28秒前
29秒前
研友_nVWP2Z发布了新的文献求助10
30秒前
Hello应助我要向阳而生采纳,获得10
31秒前
科研通AI2S应助北陆小猫采纳,获得10
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993004
求助须知:如何正确求助?哪些是违规求助? 3533831
关于积分的说明 11263946
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882968
科研通“疑难数据库(出版商)”最低求助积分说明 809629