A Comprehensive Survey of Foundation Models in Medicine

基础(证据) 工程伦理学 工程类 地理 考古
作者
Wasif Khan,Seowung Leem,Kyle B. See,Joshua K. Wong,Shaoting Zhang,Ruogu Fang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.10729
摘要

Foundation models (FMs) are large-scale deep-learning models trained on extensive datasets using self-supervised techniques. These models serve as a base for various downstream tasks, including healthcare. FMs have been adopted with great success across various domains within healthcare, including natural language processing (NLP), computer vision, graph learning, biology, and omics. Existing healthcare-based surveys have not yet included all of these domains. Therefore, this survey provides a comprehensive overview of FMs in healthcare. We focus on the history, learning strategies, flagship models, applications, and challenges of FMs. We explore how FMs such as the BERT and GPT families are reshaping various healthcare domains, including clinical large language models, medical image analysis, and omics data. Furthermore, we provide a detailed taxonomy of healthcare applications facilitated by FMs, such as clinical NLP, medical computer vision, graph learning, and other biology-related tasks. Despite the promising opportunities FMs provide, they also have several associated challenges, which are explained in detail. We also outline potential future directions to provide researchers and practitioners with insights into the potential and limitations of FMs in healthcare to advance their deployment and mitigate associated risks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
橙子关注了科研通微信公众号
1秒前
乐观的斑马完成签到,获得积分10
1秒前
wp0715完成签到,获得积分20
2秒前
英俊的铭应助郑qqqq采纳,获得10
2秒前
2秒前
果果完成签到,获得积分20
3秒前
征途不休完成签到,获得积分20
3秒前
yulong完成签到,获得积分10
3秒前
porkpork发布了新的文献求助10
3秒前
YY发布了新的文献求助10
4秒前
cnkly完成签到,获得积分10
4秒前
木火发布了新的文献求助10
7秒前
7秒前
脑洞疼应助安安采纳,获得10
7秒前
7秒前
7秒前
小蘑菇应助猪猪hero采纳,获得10
8秒前
害羞含雁完成签到,获得积分10
8秒前
8秒前
充电宝应助yhz采纳,获得10
9秒前
11秒前
小马甲应助核动力驴采纳,获得10
11秒前
12秒前
如意宛秋发布了新的文献求助100
12秒前
12秒前
不是大闸谢完成签到,获得积分10
12秒前
88发布了新的文献求助10
13秒前
second发布了新的文献求助10
14秒前
yu完成签到,获得积分10
14秒前
Jocelyn完成签到,获得积分10
16秒前
16秒前
16秒前
mhx完成签到,获得积分10
17秒前
黄子恩发布了新的文献求助10
17秒前
18秒前
啦啦啦发布了新的文献求助10
18秒前
李傲发布了新的文献求助10
18秒前
18秒前
研究生完成签到,获得积分20
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543046
求助须知:如何正确求助?哪些是违规求助? 3120471
关于积分的说明 9342549
捐赠科研通 2818520
什么是DOI,文献DOI怎么找? 1549595
邀请新用户注册赠送积分活动 722196
科研通“疑难数据库(出版商)”最低求助积分说明 713049