Accelerating cell division of Shewanella oneidensis to promote extracellular electron transfer rate for efficient pollution treatment

舍瓦内拉 电子转移 希瓦氏菌属 细胞外 师(数学) 污染 化学 细胞分裂 细胞 细胞生物学 细菌 生物化学 生物 生态学 光化学 遗传学 算术 数学
作者
Huan Yu,Fei Lan,Chaoning Hu,Zixuan You,Longhai Dai,Baocai Zhang,Qijing Liu,Bo Xiong,Liang Shi,Zhanying Liu,Feng Li,Hao Song
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:493: 152765-152765
标识
DOI:10.1016/j.cej.2024.152765
摘要

The slow rate of extracellular electron transfer (EET) of electroactive microorganisms (EAMs) remains a predominate bottleneck that restricts practical applications of bio-electrochemical systems. Cell division has significant effects on cell cycle, morphology, growth and metabolism. However, the relation between cell division and the EET rate of Shewanella oneidensis has not been established. Here, we employed modular engineering strategy to accelerate DNA replication in the C period and divisome formation in the D period of cell cycle, which decreased cellular volume and enhanced the EET efficiency. Assembly of the C and D period modules further decreased the cell volume by 82.0 % and enhanced power density by 3.12-fold. Electrophysiological and transcriptomic analyses synergistically revealed that the programmed cell volume decrease facilitated lactate uptake and cellular metabolism due to the increased specific surface area (SSA), which consequently reinforced intracellular electron generation. Moreover, the reduced cell size facilitated electroactive biofilm formation. Furthermore, programmed increase in riboflavin biosynthesis and transport further strengthened indirect EET and boosted output power density to 1537.8 ± 116.9 mW m−2, 21.1-fold of that of the WT. The engineered strains exhibited superior abilities for Cr6+ reduction and azo dyes degradation. This study shed light on the underlying mechanism how reduced cell size impacts electrophysiology of EAMs, and indicated accelerating cell division is a promising avenue to increase the EET of EAMs for efficient environmental pollution treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cathy-w完成签到,获得积分10
刚刚
刚刚
明明发布了新的文献求助20
1秒前
失眠的平松完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
kimi完成签到,获得积分10
1秒前
外向语山发布了新的文献求助10
2秒前
2秒前
AireenBeryl531完成签到,获得积分0
2秒前
xiaoma发布了新的文献求助10
2秒前
阿及君完成签到,获得积分10
3秒前
Akim应助怕孤独的从阳采纳,获得10
3秒前
4秒前
缥缈可乐完成签到,获得积分10
4秒前
snsut发布了新的文献求助10
4秒前
kami发布了新的文献求助10
5秒前
小薇发布了新的文献求助10
5秒前
li完成签到,获得积分10
6秒前
kimi发布了新的文献求助10
7秒前
路人甲发布了新的文献求助20
7秒前
Seth完成签到,获得积分10
7秒前
顾矜应助人文采纳,获得10
7秒前
糊糊糊发布了新的文献求助10
8秒前
深情安青应助研友_nqrKQZ采纳,获得10
9秒前
科研通AI2S应助谨慎达采纳,获得10
9秒前
wu完成签到,获得积分10
10秒前
和谐为上完成签到,获得积分10
10秒前
CipherSage应助xiaoma采纳,获得10
10秒前
自信的蓝天完成签到,获得积分10
12秒前
外向语山完成签到,获得积分10
12秒前
照相机发布了新的文献求助10
13秒前
moon那样完成签到,获得积分10
13秒前
15秒前
共享精神应助xy采纳,获得10
16秒前
Fan发布了新的文献求助10
16秒前
都都yimi完成签到,获得积分10
16秒前
独特秀完成签到,获得积分20
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143506
求助须知:如何正确求助?哪些是违规求助? 2794865
关于积分的说明 7812588
捐赠科研通 2450967
什么是DOI,文献DOI怎么找? 1304178
科研通“疑难数据库(出版商)”最低求助积分说明 627193
版权声明 601386