Accelerating cell division of Shewanella oneidensis to promote extracellular electron transfer rate for efficient pollution treatment

舍瓦内拉 电子转移 希瓦氏菌属 细胞外 师(数学) 污染 化学 细胞分裂 细胞 细胞生物学 细菌 生物化学 生物 生态学 光化学 遗传学 算术 数学
作者
Huan Yu,Fei Lan,Chaoning Hu,Zixuan You,Longhai Dai,Baocai Zhang,Qijing Liu,Bo Xiong,Liang Shi,Zhanying Liu,Feng Li,Hao Song
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:493: 152765-152765
标识
DOI:10.1016/j.cej.2024.152765
摘要

The slow rate of extracellular electron transfer (EET) of electroactive microorganisms (EAMs) remains a predominate bottleneck that restricts practical applications of bio-electrochemical systems. Cell division has significant effects on cell cycle, morphology, growth and metabolism. However, the relation between cell division and the EET rate of Shewanella oneidensis has not been established. Here, we employed modular engineering strategy to accelerate DNA replication in the C period and divisome formation in the D period of cell cycle, which decreased cellular volume and enhanced the EET efficiency. Assembly of the C and D period modules further decreased the cell volume by 82.0 % and enhanced power density by 3.12-fold. Electrophysiological and transcriptomic analyses synergistically revealed that the programmed cell volume decrease facilitated lactate uptake and cellular metabolism due to the increased specific surface area (SSA), which consequently reinforced intracellular electron generation. Moreover, the reduced cell size facilitated electroactive biofilm formation. Furthermore, programmed increase in riboflavin biosynthesis and transport further strengthened indirect EET and boosted output power density to 1537.8 ± 116.9 mW m−2, 21.1-fold of that of the WT. The engineered strains exhibited superior abilities for Cr6+ reduction and azo dyes degradation. This study shed light on the underlying mechanism how reduced cell size impacts electrophysiology of EAMs, and indicated accelerating cell division is a promising avenue to increase the EET of EAMs for efficient environmental pollution treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LSH970829发布了新的文献求助10
刚刚
哈哈哈完成签到 ,获得积分10
1秒前
汤姆完成签到,获得积分10
1秒前
3秒前
3秒前
翠翠完成签到,获得积分10
4秒前
4秒前
LSH970829完成签到,获得积分10
5秒前
Lyg完成签到,获得积分20
6秒前
坚强的樱发布了新的文献求助10
6秒前
baodingning完成签到,获得积分10
7秒前
7秒前
公茂源发布了新的文献求助30
7秒前
热爱完成签到,获得积分10
8秒前
9秒前
叫滚滚发布了新的文献求助10
10秒前
星瑆心完成签到,获得积分10
10秒前
啦啦啦啦啦完成签到,获得积分10
11秒前
Lyg发布了新的文献求助10
11秒前
Dksido完成签到,获得积分10
12秒前
兰博基尼奥完成签到,获得积分10
12秒前
热情芷荷发布了新的文献求助10
14秒前
random完成签到,获得积分10
15秒前
15秒前
果果瑞宁完成签到,获得积分10
15秒前
16秒前
机智小虾米完成签到,获得积分20
16秒前
goldenfleece完成签到,获得积分10
17秒前
科研通AI2S应助学者采纳,获得10
17秒前
小杨完成签到,获得积分10
18秒前
sutharsons应助科研通管家采纳,获得30
19秒前
19秒前
Ava应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得30
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808