清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Memory-augmented Autoencoder with Adaptive Reconstruction and Sample Attribution Mining for Hyperspectral Anomaly Detection

高光谱成像 自编码 异常检测 计算机科学 人工智能 异常(物理) 模式识别(心理学) 样品(材料) 遥感 地质学 人工神经网络 凝聚态物理 色谱法 物理 化学
作者
Yu Huo,Xi Cheng,Sheng Lin,Min Zhang,Min Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18
标识
DOI:10.1109/tgrs.2024.3399313
摘要

Hyperspectral anomaly detection (HAD) aims to identify targets that are significantly different from their surrounding background, employing an unsupervised paradigm. Recently, detectors based on autoencoder (AE) have become predominant methods and demonstrated satisfactory performance. However, there are still two problems that need to be solved. Firstly, the hypothesis that the AE-based models can effectively reconstruct background samples while anomalies cannot, may not always be true in practice, due to their powerful capability for feature extraction. Secondly, the AE-based models primarily concentrate on the quality of sample reconstruction, regardless of whether the encoded features signify the anomalies or background, which is not conducive to the separation of anomalies from the background. To handle the above-mentioned problems, a novel memory-augmented autoencoder (MAAE) model is developed to better reconstruct the background and suppress anomalies reconstruction. Specifically, for the first problem, a novel superpixel-guided adaptive weight calculation (SAWC) module is devised to generate adaptive weights (AWs) by taking into account contextual information in the error map, and then the AWs are incorporated into the reconstruction loss, where the potential background samples are endowed with larger AWs than anomalies during training. For the second problem, a novel sample attribution mining (SAM) module is developed to mine sample attribution (i.e., explore whether a certain sample belongs to the background or anomaly), and the mined background and anomaly samples are employed to train different modules for better separating the anomalies and background. Additionally, an entropy-based sparse addressing (ESA) module is further designed to weaken the reconstruction ability for anomaly samples by designing a learnable sparse addressing weight for memory module. The ablation study validates the effectiveness of the proposed SAWC, SAM, and ESA. Extensive comparison experiments on six hyperspectral image datasets demonstrate the superiority in terms of comprehensive detection performance and background suppression of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jlwang完成签到,获得积分10
6秒前
11秒前
17秒前
大胆海瑶发布了新的文献求助10
18秒前
大胆海瑶完成签到,获得积分10
23秒前
嘻嘻发布了新的文献求助30
27秒前
明亮的初阳完成签到,获得积分10
36秒前
39秒前
香蕉觅云应助明亮的初阳采纳,获得30
48秒前
48秒前
vbnn完成签到 ,获得积分10
1分钟前
1分钟前
搜集达人应助dd采纳,获得10
1分钟前
1分钟前
nenoaowu应助55555采纳,获得50
1分钟前
1分钟前
dd发布了新的文献求助10
1分钟前
拓跋雨梅完成签到 ,获得积分0
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
小胖完成签到 ,获得积分10
2分钟前
Orange应助希夷采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
希夷发布了新的文献求助10
2分钟前
研友_LMpo68发布了新的文献求助10
2分钟前
3分钟前
zijingsy完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
4分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388485
求助须知:如何正确求助?哪些是违规求助? 3000803
关于积分的说明 8793833
捐赠科研通 2686944
什么是DOI,文献DOI怎么找? 1471964
科研通“疑难数据库(出版商)”最低求助积分说明 680668
邀请新用户注册赠送积分活动 673317