Memory-augmented Autoencoder with Adaptive Reconstruction and Sample Attribution Mining for Hyperspectral Anomaly Detection

高光谱成像 自编码 异常检测 计算机科学 人工智能 异常(物理) 模式识别(心理学) 样品(材料) 遥感 地质学 人工神经网络 凝聚态物理 色谱法 物理 化学
作者
Yu Huo,Xi Cheng,Sheng Lin,Min Zhang,Min Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18
标识
DOI:10.1109/tgrs.2024.3399313
摘要

Hyperspectral anomaly detection (HAD) aims to identify targets that are significantly different from their surrounding background, employing an unsupervised paradigm. Recently, detectors based on autoencoder (AE) have become predominant methods and demonstrated satisfactory performance. However, there are still two problems that need to be solved. Firstly, the hypothesis that the AE-based models can effectively reconstruct background samples while anomalies cannot, may not always be true in practice, due to their powerful capability for feature extraction. Secondly, the AE-based models primarily concentrate on the quality of sample reconstruction, regardless of whether the encoded features signify the anomalies or background, which is not conducive to the separation of anomalies from the background. To handle the above-mentioned problems, a novel memory-augmented autoencoder (MAAE) model is developed to better reconstruct the background and suppress anomalies reconstruction. Specifically, for the first problem, a novel superpixel-guided adaptive weight calculation (SAWC) module is devised to generate adaptive weights (AWs) by taking into account contextual information in the error map, and then the AWs are incorporated into the reconstruction loss, where the potential background samples are endowed with larger AWs than anomalies during training. For the second problem, a novel sample attribution mining (SAM) module is developed to mine sample attribution (i.e., explore whether a certain sample belongs to the background or anomaly), and the mined background and anomaly samples are employed to train different modules for better separating the anomalies and background. Additionally, an entropy-based sparse addressing (ESA) module is further designed to weaken the reconstruction ability for anomaly samples by designing a learnable sparse addressing weight for memory module. The ablation study validates the effectiveness of the proposed SAWC, SAM, and ESA. Extensive comparison experiments on six hyperspectral image datasets demonstrate the superiority in terms of comprehensive detection performance and background suppression of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王明磊发布了新的文献求助10
1秒前
小蘑菇应助可靠幻然采纳,获得10
2秒前
今后应助行7采纳,获得30
2秒前
清脆大树完成签到,获得积分10
3秒前
怡崽发布了新的文献求助10
4秒前
5秒前
黄朝坤发布了新的文献求助10
5秒前
yiy37发布了新的文献求助10
6秒前
这个研究生不读也罢完成签到,获得积分10
8秒前
8秒前
CipherSage应助王明磊采纳,获得10
10秒前
lixin发布了新的文献求助10
11秒前
12秒前
12秒前
丘比特应助jzyy采纳,获得10
12秒前
科研通AI6.1应助momo采纳,获得10
12秒前
13秒前
爱撒娇的文博完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
aaa完成签到,获得积分10
15秒前
传奇3应助烟雨采纳,获得10
15秒前
15秒前
田様应助wdd采纳,获得10
16秒前
冰雪物语发布了新的文献求助10
16秒前
16秒前
飞快的万恶完成签到,获得积分10
17秒前
如意的冰双完成签到 ,获得积分10
17秒前
18秒前
lal完成签到,获得积分10
19秒前
烟花应助miemie采纳,获得10
20秒前
Nemo1234完成签到,获得积分10
20秒前
20秒前
核桃发布了新的文献求助10
21秒前
Singularity应助可靠幻然采纳,获得10
21秒前
21秒前
科研通AI6.1应助怡崽采纳,获得10
21秒前
xt完成签到,获得积分10
23秒前
23秒前
吴嘉豪完成签到,获得积分20
23秒前
852应助lixin采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5826287
求助须知:如何正确求助?哪些是违规求助? 6014575
关于积分的说明 15569073
捐赠科研通 4946592
什么是DOI,文献DOI怎么找? 2664891
邀请新用户注册赠送积分活动 1610666
关于科研通互助平台的介绍 1565636