State-to-state dynamics and machine learning predictions of inelastic and reactive O(3P) + CO(1∑+) collisions relevant to hypersonic flows

非弹性碰撞 物理 离解(化学) 原子物理学 基态 非弹性散射 化学 核物理学 物理化学 量子力学 散射 电子
作者
Xia Huang,Xinlu Cheng
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:160 (17) 被引量:3
标识
DOI:10.1063/5.0195543
摘要

The state-to-state (STS) inelastic energy transfer and O-atom exchange reaction between O and CO(v), as two fundamental processes in non-equilibrium air flow around spacecraft entering Mars’ atmosphere, yield the same products and both make significant contributions to the O + CO(v) → O + CO(v′) collisions. The inelastic energy transfer competes with the O-atom exchange reaction. The detailed reaction mechanisms of these two elementary processes and their specific contributions to the CO relaxation process are still unclear. To address these concerns, we performed systematic investigations on the 3A′ and 3A″ potential energy surfaces (PESs) of CO2 using quasi-classical trajectory (QCT) calculations. Analysis of the collision mechanisms reveals that inelastic collisions have an apparent PES preference (i.e., they tend to occur on the 3A′ PES), while reactive collisions do not. Reactive rates decrease significantly when the total collision energy approaches dissociation energy, which differs from the inelastic process. Inelastic rates are generally lower than the reactive rates below ∼10 000 K, except for single quantum jumps, whereas the reverse is observed above ∼10 000 K. In addition, by combining QCT with convolutional neural networks, we have established neural network (NN)-STS1 (inelastic) and NN-STS2 (reactive) models to generate all possible STS cross sections. The NN-based models accurately reproduce the results calculated from QCT calculations. In this study, all calculations have been focused on analyzing collisions at the ground rotational level.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
儒雅卿完成签到,获得积分10
刚刚
1秒前
Akim应助kano采纳,获得10
1秒前
1秒前
2秒前
3秒前
3秒前
爱吃玉米发布了新的文献求助10
3秒前
SCboxamn完成签到,获得积分10
3秒前
科研狂徒发布了新的文献求助10
5秒前
5秒前
5秒前
万能图书馆应助jinxli采纳,获得10
5秒前
怡然诗翠完成签到,获得积分20
7秒前
7秒前
7秒前
dywen完成签到,获得积分10
7秒前
执着谷梦发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助谨慎从露采纳,获得10
8秒前
CodeCraft应助影子1127采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
谢雨嘉完成签到 ,获得积分10
10秒前
10秒前
烟花应助DE2022采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得30
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
pluto应助科研通管家采纳,获得10
10秒前
泥巴完成签到,获得积分10
10秒前
ZQP发布了新的文献求助10
10秒前
10秒前
毛豆应助科研通管家采纳,获得10
10秒前
伶俐从筠应助科研通管家采纳,获得10
10秒前
Billy应助科研通管家采纳,获得30
10秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312474
求助须知:如何正确求助?哪些是违规求助? 2945127
关于积分的说明 8523062
捐赠科研通 2620847
什么是DOI,文献DOI怎么找? 1433151
科研通“疑难数据库(出版商)”最低求助积分说明 664881
邀请新用户注册赠送积分活动 650255