Neural-FxSMC: A Robust Adaptive Neural Fixed-Time Sliding Mode Control for Quadrotors With Unknown Uncertainties

控制理论(社会学) 滑模控制 人工神经网络 模式(计算机接口) 计算机科学 自适应控制 控制(管理) 人工智能 非线性系统 物理 量子力学 操作系统
作者
Subhash Chand Yogi,Laxmidhar Behera,Twinkle Tripathy
出处
期刊:IEEE robotics and automation letters 卷期号:: 1-8
标识
DOI:10.1109/lra.2024.3398425
摘要

This paper presents Neural-FxSMC , a robust and precise control scheme for quadrotors to counter unknown dynamics, uncertainties, and external disturbances. Neural-FxSMC , ( i ) addresses fixed-time convergence of the tracking error, control singularity, and chattering issues simultaneously, which is not possible with the existing Fixed time Sliding Mode Control (FxSMC), and ( ii ) relaxes the a priori bound assumption over the uncertainties that are often considered as a constant or a state-dependent upper bound. The fixed-time convergence of tracking error is guaranteed by establishing fixed-time convergence of the Non-singular Fast Terminal Sliding Surface (NFTSS), contrary to the existing works where the NFTSS convergence depends on initial conditions. The Chattering is suppressed via Radial Basis Function Network (RBFN) based uncertainties estimation. Finally, using the Lyapunov theory, we prove the fixed-time convergence and boundedness of Neural-FxSMC weights. We comprehensively evaluate Neural-FxSMC in challenging scenarios such as unknown payload and turbulent wind. Our Neural-FxSMC , apart from handling unknown dynamics and uncertainties, also offers direct gravity compensation without using quadrotor mass and gravity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
找不到头大完成签到,获得积分20
1秒前
2秒前
4秒前
没食子酸完成签到,获得积分10
4秒前
5秒前
无极微光应助Jia采纳,获得20
6秒前
胡杨树2006完成签到,获得积分10
7秒前
fujun0095发布了新的文献求助10
8秒前
8秒前
8秒前
wxy发布了新的文献求助10
9秒前
zhaoyue完成签到 ,获得积分10
11秒前
科研狗的春天完成签到 ,获得积分10
12秒前
筷子夹豆腐脑完成签到,获得积分10
13秒前
13秒前
Jenny发布了新的文献求助10
14秒前
Estrella发布了新的文献求助10
14秒前
dandna完成签到 ,获得积分10
14秒前
晴心完成签到,获得积分10
18秒前
苹果鱼完成签到,获得积分10
19秒前
DD完成签到,获得积分10
19秒前
张二田发布了新的文献求助10
20秒前
tracer526发布了新的文献求助10
20秒前
萨尔莫斯发布了新的文献求助10
21秒前
26秒前
王佳俊完成签到,获得积分10
27秒前
27秒前
28秒前
Owen应助辜卅采纳,获得10
30秒前
30秒前
ding应助wxy采纳,获得10
36秒前
科研通AI6应助fujun0095采纳,获得10
42秒前
43秒前
萨尔莫斯发布了新的文献求助10
52秒前
52秒前
Minnie完成签到,获得积分10
53秒前
Jenny完成签到,获得积分20
56秒前
58秒前
背后的若之完成签到 ,获得积分10
59秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560383
求助须知:如何正确求助?哪些是违规求助? 4645536
关于积分的说明 14675482
捐赠科研通 4586681
什么是DOI,文献DOI怎么找? 2516518
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951