控制理论(社会学)
滑模控制
人工神经网络
模式(计算机接口)
计算机科学
自适应控制
控制(管理)
人工智能
非线性系统
物理
量子力学
操作系统
作者
Subhash Chand Yogi,Laxmidhar Behera,Twinkle Tripathy
出处
期刊:IEEE robotics and automation letters
日期:2024-01-01
卷期号:: 1-8
标识
DOI:10.1109/lra.2024.3398425
摘要
This paper presents Neural-FxSMC , a robust and precise control scheme for quadrotors to counter unknown dynamics, uncertainties, and external disturbances. Neural-FxSMC , ( i ) addresses fixed-time convergence of the tracking error, control singularity, and chattering issues simultaneously, which is not possible with the existing Fixed time Sliding Mode Control (FxSMC), and ( ii ) relaxes the a priori bound assumption over the uncertainties that are often considered as a constant or a state-dependent upper bound. The fixed-time convergence of tracking error is guaranteed by establishing fixed-time convergence of the Non-singular Fast Terminal Sliding Surface (NFTSS), contrary to the existing works where the NFTSS convergence depends on initial conditions. The Chattering is suppressed via Radial Basis Function Network (RBFN) based uncertainties estimation. Finally, using the Lyapunov theory, we prove the fixed-time convergence and boundedness of Neural-FxSMC weights. We comprehensively evaluate Neural-FxSMC in challenging scenarios such as unknown payload and turbulent wind. Our Neural-FxSMC , apart from handling unknown dynamics and uncertainties, also offers direct gravity compensation without using quadrotor mass and gravity.
科研通智能强力驱动
Strongly Powered by AbleSci AI