Cis- and trans-eQTL TWASs of breast and ovarian cancer identify more than 100 susceptibility genes in the BCAC and OCAC consortia

全基因组关联研究 乳腺癌 表达数量性状基因座 卵巢癌 生物 插补(统计学) 遗传关联 单核苷酸多态性 基因 遗传学 基因型 癌症 肿瘤科 医学 机器学习 缺少数据 计算机科学
作者
S. Taylor Head,Felipe Segato Dezem,Andrei Todor,Jingjing Yang,Jasmine Plummer,Simon A. Gayther,Siddhartha Kar,Joellen M. Schildkraut,Michael P. Epstein
出处
期刊:American Journal of Human Genetics [Elsevier]
卷期号:111 (6): 1084-1099
标识
DOI:10.1016/j.ajhg.2024.04.012
摘要

Transcriptome-wide association studies (TWASs) have investigated the role of genetically regulated transcriptional activity in the etiologies of breast and ovarian cancer. However, methods performed to date have focused on the regulatory effects of risk-associated SNPs thought to act in cis on a nearby target gene. With growing evidence for distal (trans) regulatory effects of variants on gene expression, we performed TWASs of breast and ovarian cancer using a Bayesian genome-wide TWAS method (BGW-TWAS) that considers effects of both cis- and trans-expression quantitative trait loci (eQTLs). We applied BGW-TWAS to whole-genome and RNA sequencing data in breast and ovarian tissues from the Genotype-Tissue Expression project to train expression imputation models. We applied these models to large-scale GWAS summary statistic data from the Breast Cancer and Ovarian Cancer Association Consortia to identify genes associated with risk of overall breast cancer, non-mucinous epithelial ovarian cancer, and 10 cancer subtypes. We identified 101 genes significantly associated with risk with breast cancer phenotypes and 8 with ovarian phenotypes. These loci include established risk genes and several novel candidate risk loci, such as ACAP3, whose associations are predominantly driven by trans-eQTLs. We replicated several associations using summary statistics from an independent GWAS of these cancer phenotypes. We further used genotype and expression data in normal and tumor breast tissue from the Cancer Genome Atlas to examine the performance of our trained expression imputation models. This work represents an in-depth look into the role of trans eQTLs in the complex molecular mechanisms underlying these diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨丿筠发布了新的文献求助10
2秒前
伯尔尼圆白菜完成签到,获得积分10
2秒前
爱听歌的亦玉完成签到,获得积分10
4秒前
linkin完成签到 ,获得积分10
4秒前
towanda完成签到,获得积分10
5秒前
与离完成签到 ,获得积分10
5秒前
小米完成签到,获得积分10
6秒前
SciGPT应助墨丿筠采纳,获得10
6秒前
风的季节完成签到,获得积分10
6秒前
abc1122完成签到,获得积分10
7秒前
8秒前
Wyoou完成签到,获得积分10
8秒前
9秒前
领导范儿应助卓涵柏采纳,获得10
9秒前
迷你的雁枫完成签到 ,获得积分10
9秒前
yilin完成签到,获得积分10
11秒前
liangxianli完成签到,获得积分10
11秒前
MIST完成签到,获得积分10
12秒前
粥粥爱糊糊完成签到,获得积分10
13秒前
文小杰发布了新的文献求助10
13秒前
传统的寒凝完成签到,获得积分10
13秒前
墨丿筠完成签到,获得积分10
13秒前
kx完成签到,获得积分10
13秒前
ZX801完成签到 ,获得积分10
13秒前
14秒前
14秒前
大吴克发布了新的文献求助10
15秒前
丘比特应助无限的哈密瓜采纳,获得10
15秒前
mengli完成签到 ,获得积分10
15秒前
YUU完成签到,获得积分10
15秒前
桐桐应助无所屌谓采纳,获得10
16秒前
17秒前
17秒前
Orange应助小罗同学采纳,获得10
17秒前
17秒前
三三完成签到,获得积分10
17秒前
隐形的傲易完成签到 ,获得积分10
17秒前
mt应助中二少女爱喝可乐采纳,获得10
18秒前
大棒槌完成签到,获得积分10
18秒前
杜好好完成签到,获得积分0
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556011
求助须知:如何正确求助?哪些是违规求助? 3131566
关于积分的说明 9392042
捐赠科研通 2831431
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715910