催化作用
材料科学
制氢
纳米棒
格式化
甲醇
电催化剂
过渡金属
电解
氢
氧化还原
化学工程
无机化学
电化学
纳米技术
物理化学
电极
化学
冶金
有机化学
工程类
电解质
作者
Botao Zhu,Jie Xiong,Shaofei Wu,Kaixuan You,Bin Sun,Yixiang Liu,Muzi Chen,Peng Jin,Lai Feng
标识
DOI:10.1002/adfm.202407236
摘要
Abstract Methanol‐electrooxidation‐reaction (MOR) to value‐added formate is a promising alternative to water oxidation for cost‐efficient hydrogen production. It is generally proposed that the MOR kinetics on Ni‐based catalysts are highly limited by the transition rate of Ni(OH) 2 /NiOOH. Yet, how to define the catalyst following the direct pathway without Ni 2+ /Ni 3+ transition remains challenging. Herein, a core@shell heterostructured NiMoP x @Ni 5 P 4 catalyst is developed to selectively promote the MOR at a large current density (> 500 mA cm −2 ). A series of operando spectroscopic studies reveal negligible formation of NiOOH with 1.0 m methanol in a wide potential range, where MOR is predominant. Theoretical calculations demonstrate that the Ni‐P site of NiMoP x @Ni 5 P 4 favors the adsorption of * CH 3 OH over * OH while the heterostructure contributes to the significantly reduced energy barrier of * OCH 3 → * OCH 2 , hence promoting the MOR along a direct pathway without the formation of NiOOH. Moreover, further study suggests that the catalyst also performs well toward cathodic hydrogen evolution reaction (HER). As a result, an electrode pair of NiMoP x @Ni 5 P 4 //NiMoP x @Ni 5 P 4 is employed to enable concurrent MOR/HER electrolysis at 1.81 V to yield formate/H 2 with FEs of ca. 90/100% and long‐term (100‐h) sustainability at 500 mA cm −2 under the industrial conditions (6.0 m KOH, 65 °C).
科研通智能强力驱动
Strongly Powered by AbleSci AI