Recognition of defects in wooden table spoons based on YOLO improved algorithm

计算机科学 水准点(测量) 人工智能 算法 页眉 表(数据库) 过程(计算) 模式识别(心理学) 数据挖掘 大地测量学 计算机网络 操作系统 地理
作者
Zhenyu Liu,Jinghui Zhang
标识
DOI:10.1117/12.3033178
摘要

Wooden tableware spoons form major defects such as mineral lines, cracks and scarring during the production process. In view of the current manual inspection is too inefficient as well as the problems of leakage and misdetection, so an improved algorithm based on YOLO for wood tableware defects recognition model WE-YOLO (Wee SE-YOLO) is proposed, which mainly solves the problem of detecting and distinguishing between mineral lines and cracks. The algorithm uses yolov5m, which is characterized by high detection accuracy, fast speed and small model, as a benchmark model. The training dataset is homemade, and the data are collected in five backgrounds, and the collected data are augmented; a layer of attention mechanism SE is added at the end of the backbone network of yolov5m, which improves the attention to different defects and improves the recognition accuracy; a layer of fine-target detecting header is added to the HEAD module, which reduces the probability of missing defects, and improves the detection accuracy of fine The detection accuracy of the defects is improved. Ablation experiments and comparison experiments of seven different models are carried out on the homemade dataset, and the improved algorithm has certain effects. The homemade dataset of this experiment alleviates the insufficiency of the existing dataset; the improved model is applicable to the two stages of wooden spoon production, which meets the requirements of industrial grade inspection standards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WEILAI完成签到,获得积分10
1秒前
1秒前
搜集达人应助jennifercui采纳,获得30
2秒前
2秒前
嘟嘟发布了新的文献求助10
2秒前
Lucas应助猪猪hero采纳,获得10
3秒前
科研通AI5应助早日毕业采纳,获得10
3秒前
4秒前
科研小民工给孤独的凌翠的求助进行了留言
4秒前
Cat完成签到,获得积分0
4秒前
纯情的远山完成签到,获得积分10
5秒前
5秒前
小飞七应助大方乘云采纳,获得10
5秒前
5秒前
寒士完成签到,获得积分10
6秒前
惊执虫儿完成签到,获得积分10
6秒前
牛太虚完成签到,获得积分10
6秒前
Luxc完成签到,获得积分20
6秒前
7秒前
kevinarnett完成签到,获得积分10
7秒前
10秒前
Ekko完成签到,获得积分10
10秒前
锦七完成签到,获得积分10
10秒前
稳重的灵安完成签到,获得积分10
11秒前
11秒前
义气的亦寒完成签到,获得积分10
12秒前
打打应助古的古的采纳,获得10
15秒前
椒盐丸子发布了新的文献求助10
15秒前
英姑应助wwaakk采纳,获得10
16秒前
苏以祀发布了新的文献求助10
16秒前
善学以致用应助daling采纳,获得10
17秒前
17秒前
2023AKY完成签到,获得积分10
18秒前
lala发布了新的文献求助10
20秒前
科研通AI5应助早日毕业采纳,获得30
20秒前
huiry发布了新的文献求助10
21秒前
ayayaya完成签到 ,获得积分10
21秒前
韋晴完成签到,获得积分10
21秒前
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540583
求助须知:如何正确求助?哪些是违规求助? 3117868
关于积分的说明 9332838
捐赠科研通 2815677
什么是DOI,文献DOI怎么找? 1547682
邀请新用户注册赠送积分活动 721099
科研通“疑难数据库(出版商)”最低求助积分说明 712463