Fetal Head and Pubic Symphysis Segmentation in Intrapartum Ultrasound Image Using a Dual-Path Boundary-Guided Residual Network

耻骨联合 残余物 图像分割 医学 路径(计算) 超声波 分割 计算机视觉 胎头 计算机科学 放射科 人工智能 生物医学工程 胎儿 怀孕 算法 骨盆 生物 遗传学 程序设计语言
作者
Zhensen Chen,Yaosheng Lu,Shun Long,Víctor M. Campello,Jieyun Bai,Karim Lekadir
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4648-4659 被引量:2
标识
DOI:10.1109/jbhi.2024.3399762
摘要

Accurate segmentation of the fetal head and pubic symphysis in intrapartum ultrasound images and measurement of fetal angle of progression (AoP) are critical to both outcome prediction and complication prevention in delivery. However, due to poor quality of perinatal ultrasound imaging with blurred target boundaries and the relatively small target of the public symphysis, fully automated and accurate segmentation remains challenging. In this paper, we propse a dual-path boundary-guided residual network (DBRN), which is a novel approach to tackle these challenges. The model contains a multi-scale weighted module (MWM) to gather global context information, and enhance the feature response within the target region by weighting the feature map. The model also incorporates an enhanced boundary module (EBM) to obtain more precise boundary information. Furthermore, the model introduces a boundary-guided dual-attention residual module (BDRM) for residual learning. BDRM leverages boundary information as prior knowledge and employs spatial attention to simultaneously focus on background and foreground information, in order to capture concealed details and improve segmentation accuracy. Extensive comparative experiments have been conducted on three datasets. The proposed method achieves average Dice score of 0.908 $\pm$ 0.05 and average Hausdorff distance of 3.396 $\pm$ 0.66 mm. Compared with state-of-the-art competitors, the proposed DBRN achieves better results. In addition, the average difference between the automatic measurement of AoPs based on this model and the manual measurement results is 6.157 $^{\circ }$ , which has good consistency and has broad application prospects in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助yg19960114采纳,获得10
刚刚
刚刚
1秒前
坚强的代曼完成签到,获得积分10
1秒前
李鬼胥完成签到,获得积分10
2秒前
彭于晏应助leaves采纳,获得10
2秒前
SMLW发布了新的文献求助10
5秒前
123456完成签到,获得积分10
7秒前
Joshua完成签到,获得积分10
9秒前
10秒前
12秒前
王77完成签到,获得积分10
12秒前
13秒前
13秒前
虚幻紫伊完成签到,获得积分10
15秒前
阿北发布了新的文献求助10
16秒前
nana发布了新的文献求助10
16秒前
星黛Lu完成签到,获得积分10
17秒前
18秒前
wenqin发布了新的文献求助20
18秒前
20秒前
21秒前
shimmer完成签到,获得积分10
21秒前
21秒前
jx完成签到 ,获得积分10
22秒前
yg19960114发布了新的文献求助10
23秒前
哈哈哈哈哈完成签到,获得积分10
23秒前
FashionBoy应助nana采纳,获得10
23秒前
leaves发布了新的文献求助10
24秒前
小黄不慌完成签到,获得积分10
24秒前
Gzl完成签到 ,获得积分10
25秒前
25秒前
调皮盼曼关注了科研通微信公众号
25秒前
JERLY发布了新的文献求助10
26秒前
26秒前
深情安青应助TJC采纳,获得10
27秒前
科研通AI2S应助516采纳,获得10
28秒前
Abdurrahman完成签到,获得积分10
28秒前
香蕉觅云应助Jewl采纳,获得10
29秒前
LU关注了科研通微信公众号
30秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1100
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3116254
求助须知:如何正确求助?哪些是违规求助? 2766234
关于积分的说明 7686180
捐赠科研通 2421629
什么是DOI,文献DOI怎么找? 1285798
科研通“疑难数据库(出版商)”最低求助积分说明 620144
版权声明 599809