Fetal Head and Pubic Symphysis Segmentation in Intrapartum Ultrasound Image Using a Dual-Path Boundary-Guided Residual Network

耻骨联合 残余物 图像分割 医学 路径(计算) 超声波 分割 计算机视觉 胎头 计算机科学 放射科 人工智能 生物医学工程 胎儿 怀孕 算法 骨盆 遗传学 生物 程序设计语言
作者
Zhensen Chen,Yaosheng Lu,Shun Long,Víctor M. Campello,Jieyun Bai,Karim Lekadir
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4648-4659 被引量:3
标识
DOI:10.1109/jbhi.2024.3399762
摘要

Accurate segmentation of the fetal head and pubic symphysis in intrapartum ultrasound images and measurement of fetal angle of progression (AoP) are critical to both outcome prediction and complication prevention in delivery. However, due to poor quality of perinatal ultrasound imaging with blurred target boundaries and the relatively small target of the public symphysis, fully automated and accurate segmentation remains challenging. In this paper, we propse a dual-path boundary-guided residual network (DBRN), which is a novel approach to tackle these challenges. The model contains a multi-scale weighted module (MWM) to gather global context information, and enhance the feature response within the target region by weighting the feature map. The model also incorporates an enhanced boundary module (EBM) to obtain more precise boundary information. Furthermore, the model introduces a boundary-guided dual-attention residual module (BDRM) for residual learning. BDRM leverages boundary information as prior knowledge and employs spatial attention to simultaneously focus on background and foreground information, in order to capture concealed details and improve segmentation accuracy. Extensive comparative experiments have been conducted on three datasets. The proposed method achieves average Dice score of 0.908 $\pm$ 0.05 and average Hausdorff distance of 3.396 $\pm$ 0.66 mm. Compared with state-of-the-art competitors, the proposed DBRN achieves better results. In addition, the average difference between the automatic measurement of AoPs based on this model and the manual measurement results is 6.157 $^{\circ }$ , which has good consistency and has broad application prospects in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XLL小绿绿发布了新的文献求助30
1秒前
木木康完成签到,获得积分10
2秒前
2秒前
佛人世间完成签到,获得积分10
3秒前
i3utter完成签到,获得积分10
3秒前
4秒前
不二佳发布了新的文献求助10
5秒前
朴实以松完成签到,获得积分10
5秒前
李健的粉丝团团长应助yy采纳,获得10
7秒前
满眼星辰发布了新的文献求助10
7秒前
ggun发布了新的文献求助10
8秒前
李爱国应助LING采纳,获得10
9秒前
10秒前
10秒前
10秒前
11秒前
科目三应助大力世界采纳,获得10
11秒前
清脆的新柔完成签到,获得积分20
11秒前
HelenZ发布了新的文献求助10
11秒前
搜集达人应助可耐的老虎采纳,获得10
11秒前
梁辰完成签到,获得积分10
11秒前
呐呐呐完成签到,获得积分10
12秒前
传统的纸飞机完成签到 ,获得积分10
12秒前
抓到你啦发布了新的文献求助20
12秒前
bkagyin应助大力山槐采纳,获得10
12秒前
14秒前
gogoyoco发布了新的文献求助10
15秒前
15秒前
15秒前
galaxy发布了新的文献求助10
16秒前
lm发布了新的文献求助10
16秒前
小蛮样完成签到,获得积分10
16秒前
bishop发布了新的文献求助10
16秒前
悦耳的成危完成签到,获得积分10
16秒前
邓佳鑫Alan应助wei采纳,获得10
18秒前
俏皮芷蕊发布了新的文献求助10
18秒前
20秒前
20秒前
20秒前
开朗的睫毛膏完成签到,获得积分10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966444
求助须知:如何正确求助?哪些是违规求助? 3511885
关于积分的说明 11160462
捐赠科研通 3246599
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874451
科研通“疑难数据库(出版商)”最低求助积分说明 804388