已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fetal Head and Pubic Symphysis Segmentation in Intrapartum Ultrasound Image Using a Dual-Path Boundary-Guided Residual Network

耻骨联合 残余物 图像分割 医学 路径(计算) 超声波 分割 计算机视觉 胎头 计算机科学 放射科 人工智能 生物医学工程 胎儿 怀孕 算法 骨盆 生物 遗传学 程序设计语言
作者
Zhensen Chen,Yaosheng Lu,Shun Long,Víctor M. Campello,Jieyun Bai,Karim Lekadir
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4648-4659 被引量:13
标识
DOI:10.1109/jbhi.2024.3399762
摘要

Accurate segmentation of the fetal head and pubic symphysis in intrapartum ultrasound images and measurement of fetal angle of progression (AoP) are critical to both outcome prediction and complication prevention in delivery. However, due to poor quality of perinatal ultrasound imaging with blurred target boundaries and the relatively small target of the public symphysis, fully automated and accurate segmentation remains challenging. In this paper, we propse a dual-path boundary-guided residual network (DBRN), which is a novel approach to tackle these challenges. The model contains a multi-scale weighted module (MWM) to gather global context information, and enhance the feature response within the target region by weighting the feature map. The model also incorporates an enhanced boundary module (EBM) to obtain more precise boundary information. Furthermore, the model introduces a boundary-guided dual-attention residual module (BDRM) for residual learning. BDRM leverages boundary information as prior knowledge and employs spatial attention to simultaneously focus on background and foreground information, in order to capture concealed details and improve segmentation accuracy. Extensive comparative experiments have been conducted on three datasets. The proposed method achieves average Dice score of 0.908 ±0.05 and average Hausdorff distance of 3.396 ±0.66 mm. Compared with state-of-the-art competitors, the proposed DBRN achieves better results. In addition, the average difference between the automatic measurement of AoPs based on this model and the manual measurement results is 6.157 °, which has good consistency and has broad application prospects in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无糖美式发布了新的文献求助10
刚刚
刚刚
0000完成签到 ,获得积分10
1秒前
所所应助阿狸贱贱采纳,获得10
1秒前
lsybf完成签到,获得积分10
2秒前
ina完成签到,获得积分10
3秒前
小羊发布了新的文献求助10
4秒前
4秒前
111122223333发布了新的文献求助10
4秒前
Ali990323发布了新的文献求助10
7秒前
7秒前
9秒前
10秒前
脑洞疼应助不器君采纳,获得10
11秒前
11秒前
巫马尔槐发布了新的文献求助10
14秒前
15秒前
16秒前
bluee完成签到,获得积分10
16秒前
17秒前
19秒前
徐逊发布了新的文献求助10
19秒前
sci发布了新的文献求助10
20秒前
msk完成签到,获得积分10
20秒前
万能图书馆应助小萌兽采纳,获得10
20秒前
今后应助疯狂的石头采纳,获得10
21秒前
科研通AI6应助yangyajie采纳,获得20
21秒前
烙饼发布了新的文献求助10
21秒前
qdr发布了新的文献求助30
24秒前
俊逸的雅山完成签到 ,获得积分20
24秒前
不器君发布了新的文献求助10
25秒前
青鸟完成签到,获得积分10
25秒前
香蕉子骞完成签到 ,获得积分10
26秒前
Xiaoqiang完成签到,获得积分10
26秒前
娇娇完成签到 ,获得积分10
28秒前
29秒前
不羁完成签到 ,获得积分10
30秒前
夏爽2023发布了新的文献求助50
30秒前
优雅靖柏发布了新的文献求助10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339