Multi-view rotating machinery fault diagnosis with adaptive co-attention fusion network

计算机科学 断层(地质) 人工智能 代表(政治) 构造(python库) 特征(语言学) 机器学习 特征学习 模式识别(心理学) 数据挖掘 语言学 哲学 地震学 地质学 政治 政治学 法学 程序设计语言
作者
Xiaorong Liu,Jie Wang,Sa Meng,Xiwei Qiu,Guilin Zhao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:122: 106138-106138 被引量:17
标识
DOI:10.1016/j.engappai.2023.106138
摘要

Intelligent fault diagnosis is an intriguing topic, attracting increasing interest in safe and reliable industrial production. Tremendous progress has been made in recent years in developing better fault diagnosis methods. Nevertheless, most methods rely on an individual vibration signal while ignoring the consensus and complementary between different views of the signal. Towards this end, we propose a novel method named COFU, i.e., a multi-view learning model with CO-attention FUsion network for rotating machinery fault diagnosis, which primarily exploits consensus and complementary across multiple views. Specifically, we first utilize three different encoders to construct high-level feature spaces of multiple views. Then the adaptive co-attention fusion network is designed to learn an integrated representation where rich associations among these feature spaces are fully considered. Finally, the fault detector fed by the fused representation is devised to diagnose the fault category. To affirm the efficacy of the proposed approach, a comprehensive evaluation has been conducted on the CWRU, SEU_bearing, and SEU_gear datasets. The results indicate that the accuracy of the COFU method is 100%, 99.95%, and 100%, respectively. Encouraging findings demonstrate that our method outperforms all the baseline methods. Furthermore, it is observed that the COFU method demonstrates improved performance when applied in noisy environments. This study offers a promising solution that ensures the great potential of multi-view fusion in rotating machinery fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
姜积木发布了新的文献求助10
1秒前
2秒前
优美电脑发布了新的文献求助10
2秒前
yihuifa完成签到 ,获得积分10
3秒前
pppyrus发布了新的文献求助10
3秒前
艾七七完成签到,获得积分10
4秒前
4秒前
黄音发布了新的文献求助10
4秒前
健壮的面包完成签到,获得积分10
5秒前
5秒前
情怀应助runner采纳,获得10
7秒前
nwds完成签到,获得积分10
7秒前
7秒前
顾矜应助log采纳,获得10
7秒前
斯文败类应助ee采纳,获得10
8秒前
9秒前
111完成签到,获得积分10
9秒前
眼睛大雨筠应助森林木采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
咯噔发布了新的文献求助10
10秒前
赘婿应助复杂若男采纳,获得10
11秒前
AHR发布了新的文献求助10
11秒前
牛X完成签到,获得积分10
12秒前
12秒前
斯文败类应助优美电脑采纳,获得10
13秒前
13秒前
sfafasfsdf完成签到,获得积分10
13秒前
热情无心完成签到,获得积分10
13秒前
13秒前
乐乐应助15采纳,获得10
13秒前
天天快乐应助酷酷巧蟹采纳,获得10
13秒前
hkh发布了新的文献求助10
14秒前
失眠夏山发布了新的文献求助10
14秒前
Hello应助天真的雨采纳,获得10
15秒前
16秒前
ee发布了新的文献求助10
16秒前
16秒前
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961675
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139238
捐赠科研通 3240579
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803326