Reliable Organic Carbonyl Electrode Materials Enabled by Electrolyte and Interfacial Chemistry Regulation

电解质 阳极 电化学 电极 溶解 纳米技术 材料科学 阴极 电池(电) 有机自由基电池 化学工程 化学 有机化学 功率(物理) 物理化学 工程类 物理 量子力学
作者
Yong Lü,Youxuan Ni,Jun Chen
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (3): 375-385 被引量:2
标识
DOI:10.1021/acs.accounts.3c00687
摘要

ConspectusLithium-ion batteries (LIBs) have achieved great success and dominated the market of portable electronics and electric vehicles owing to their high energy density and long-term cyclability. However, if applying LIBs for large-scale energy storage scenarios, such as regulating the output of electricity generated by sustainable energy in the future age of carbon neutrality, the current electrochemistry of LIBs based on Li-ion interaction/deinteraction between a transition-metal oxide cathode and graphite anode will suffer from problems of scarce natural resources (e.g., Li, Co, and Ni) and high energy consumption/CO2 emission involved in the production of electrodes. Similarly, other commercial batteries such as lead–acid batteries and nickel–metal hydride batteries are also plagued by these issues.In contrast, organic electrode materials, especially carbonyl materials, exhibit advantages of abundant resources, renewability, high capacity, environmental friendliness, and structural designability and have shown great promise for various rechargeable batteries in recent years. However, organic carbonyl electrode materials generally exhibit unsatisfactory cycling stability and rate performance, which are highly dependent on the electrolyte and interfacial chemistry. Appropriate electrolytes and a stable electrode/electrolyte interface would be beneficial for preventing the dissolution of organic carbonyl electrode materials and/or their redox intermediates in electrolytes and promoting fast ion transport between the electrode and electrolyte. In this regard, designing an appropriate electrolyte and constructing a stable electrode/electrolyte interface are the keys to enhancing the comprehensive performance of organic carbonyl electrode materials.In this Account, on the basis of our progress and related works from other groups in the past decade, we afford an overview of understanding the effects of electrolyte and interfacial chemistry on the electrochemical performance of organic carbonyl electrode materials. We will start by briefly introducing the basic properties, working mechanisms, and issues of organic carbonyl electrode materials. Then, the implications of electrolyte and electrode/electrolyte interfacial chemistry on electrochemical performance will be summarized and highlighted through discussing the performance of organic carbonyl electrodes in different types of electrolytes (organic liquid and aqueous and solid-state electrolytes). Meanwhile, the design principles of electrolytes and interfacial chemistry for organic carbonyl electrodes are also discussed. A representative example is that organic carbonyl electrode materials often exhibit better electrochemical performance in ether-based electrolytes than in ester-based electrolytes, which could be mainly attributed to the stable and robust solid electrolyte interphase (SEI) formed on carbonyl electrodes in the ether-based electrolyte. This example demonstrates the importance of investigating the electrode/electrolyte interfacial chemistry of organic carbonyl electrode materials. Finally, future perspectives on designing appropriate electrolytes and understanding electrode/electrolyte interfacial chemistry will also be discussed. It is meaningful to thoroughly reveal the dynamic evolution of the electrode/electrolyte interface during discharge/charge processes and evaluate the compatibility between electrolytes and organic carbonyl electrode materials under practical conditions using limited quantities of electrolytes and high areal-specific-capacity electrodes in the future. This Account could attract more attention to electrolytes and the electrode/electrolyte interfacial chemistry of organic carbonyl electrode materials and finally promote their future commercial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良安梦完成签到,获得积分10
刚刚
lcc应助xx采纳,获得10
刚刚
sissiarno应助long0809采纳,获得100
2秒前
田様应助白蓝采纳,获得10
8秒前
Pan完成签到,获得积分10
11秒前
12秒前
12秒前
个性的饼干完成签到,获得积分10
13秒前
wangeil007完成签到,获得积分10
14秒前
高大的白莲完成签到 ,获得积分10
14秒前
菜大炮发布了新的文献求助10
17秒前
17秒前
自转无风发布了新的文献求助10
21秒前
郁乾完成签到,获得积分10
21秒前
ZY完成签到 ,获得积分10
25秒前
丘比特应助sxy采纳,获得10
28秒前
28秒前
MorningStar完成签到,获得积分10
30秒前
YunZeng完成签到,获得积分10
32秒前
wanci应助科研通管家采纳,获得10
33秒前
咖啡豆应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
领导范儿应助科研通管家采纳,获得10
33秒前
SciGPT应助科研通管家采纳,获得10
33秒前
咖啡豆应助科研通管家采纳,获得10
33秒前
乐乐应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
Llllllxxxxxxx发布了新的文献求助10
35秒前
38秒前
111完成签到 ,获得积分10
38秒前
YunZeng发布了新的文献求助10
39秒前
duan发布了新的文献求助10
43秒前
tsttst完成签到,获得积分10
43秒前
ll发布了新的文献求助10
43秒前
jiajiajai完成签到,获得积分10
46秒前
叁叁肆完成签到,获得积分10
47秒前
上官若男应助凉拌折耳根采纳,获得30
48秒前
49秒前
充电宝应助czephyr采纳,获得10
49秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791184
关于积分的说明 7798192
捐赠科研通 2447619
什么是DOI,文献DOI怎么找? 1301996
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194