Contrastive learning-based histopathological features infer molecular subtypes and clinical outcomes of breast cancer from unannotated whole slide images

乳腺癌 计算机科学 人工智能 数字化病理学 特征(语言学) 机器学习 计算生物学 深度学习 精密医学 癌症 模式识别(心理学) 医学 病理 生物 内科学 语言学 哲学
作者
Hui Liu,Yang Zhang,Judong Luo
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:170: 107997-107997 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.107997
摘要

The artificial intelligence-powered computational pathology has led to significant improvements in the speed and precision of tumor diagnosis, while also exhibiting substantial potential to infer genetic mutations and gene expression levels. However, current studies remain limited in predicting molecular subtypes and clinical outcomes in breast cancer. In this paper, we proposed a weakly supervised contrastive learning framework to address this challenge. Our framework first performed contrastive learning pretraining on a large number of unlabeled patches tiled from whole slide images (WSIs) to extract patch-level features. The gated attention mechanism was leveraged to aggregate patch-level features to produce slide feature that was then applied to various downstream tasks. To confirm the effectiveness of the proposed method, three public cohorts and one external independent cohort of breast cancer have been used to conducted evaluation experiments. The predictive powers of our model to infer gene expression, molecular subtypes, recurrence events and drug responses were validated across cohorts. In addition, the learned patch-level attention scores enabled us to generate heatmaps that were highly consistent with pathologist annotations and spatial transcriptomic data. These findings demonstrated that our model effectively established the high-order genotype-phenotype associations, thereby potentially extend the application of digital pathology in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc发布了新的文献求助50
1秒前
dd完成签到 ,获得积分10
3秒前
天天完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
yuki完成签到,获得积分10
5秒前
依然灬聆听完成签到,获得积分10
6秒前
6秒前
小朱完成签到,获得积分10
7秒前
陈一一完成签到 ,获得积分10
7秒前
纸芯完成签到 ,获得积分10
8秒前
NINI完成签到 ,获得积分10
8秒前
蜂鸟5156完成签到,获得积分10
8秒前
溜溜发布了新的文献求助10
10秒前
VDC发布了新的文献求助10
11秒前
Lyuemei完成签到 ,获得积分10
12秒前
恬恬完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
14秒前
热依汗古丽完成签到,获得积分10
14秒前
HX发布了新的文献求助20
14秒前
15秒前
qian完成签到 ,获得积分10
16秒前
16秒前
Zzzzzzzzzzz发布了新的文献求助10
17秒前
17秒前
17秒前
典雅的果汁完成签到,获得积分20
19秒前
Laus完成签到,获得积分20
20秒前
搜集达人应助gzsy采纳,获得10
20秒前
俭朴夜雪发布了新的文献求助10
20秒前
Hello应助橙橙梨梨茶采纳,获得10
21秒前
认真的rain发布了新的文献求助50
22秒前
深情的鑫鹏完成签到,获得积分10
22秒前
寒涛先生发布了新的文献求助10
23秒前
空心发布了新的文献求助30
23秒前
希望天下0贩的0应助星星采纳,获得10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808