Contrastive learning-based histopathological features infer molecular subtypes and clinical outcomes of breast cancer from unannotated whole slide images

乳腺癌 计算机科学 人工智能 数字化病理学 特征(语言学) 机器学习 计算生物学 深度学习 精密医学 癌症 模式识别(心理学) 医学 病理 生物 内科学 哲学 语言学
作者
Hui Liu,Yang Zhang,Judong Luo
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 107997-107997 被引量:5
标识
DOI:10.1016/j.compbiomed.2024.107997
摘要

The artificial intelligence-powered computational pathology has led to significant improvements in the speed and precision of tumor diagnosis, while also exhibiting substantial potential to infer genetic mutations and gene expression levels. However, current studies remain limited in predicting molecular subtypes and clinical outcomes in breast cancer. In this paper, we proposed a weakly supervised contrastive learning framework to address this challenge. Our framework first performed contrastive learning pretraining on a large number of unlabeled patches tiled from whole slide images (WSIs) to extract patch-level features. The gated attention mechanism was leveraged to aggregate patch-level features to produce slide feature that was then applied to various downstream tasks. To confirm the effectiveness of the proposed method, three public cohorts and one external independent cohort of breast cancer have been used to conducted evaluation experiments. The predictive powers of our model to infer gene expression, molecular subtypes, recurrence events and drug responses were validated across cohorts. In addition, the learned patch-level attention scores enabled us to generate heatmaps that were highly consistent with pathologist annotations and spatial transcriptomic data. These findings demonstrated that our model effectively established the high-order genotype-phenotype associations, thereby potentially extend the application of digital pathology in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
刚刚
852应助喝到几点采纳,获得10
1秒前
1秒前
丘比特应助Rebecca采纳,获得10
1秒前
1秒前
1秒前
含蓄心锁完成签到,获得积分20
3秒前
哆啦A梦发布了新的文献求助10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
一根藤发布了新的文献求助10
4秒前
肖小张发布了新的文献求助10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得20
4秒前
大个应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
谦让的博完成签到,获得积分10
5秒前
5秒前
蜡笔小新发布了新的文献求助10
6秒前
Tammy完成签到,获得积分10
6秒前
6秒前
7秒前
zhoujunjie完成签到,获得积分10
7秒前
Aura完成签到,获得积分10
7秒前
墨墨叻发布了新的文献求助10
8秒前
harry2021完成签到,获得积分10
9秒前
MeOH拿桶接发布了新的文献求助30
10秒前
乐乐应助如风随水采纳,获得10
10秒前
zhoujunjie发布了新的文献求助10
11秒前
12秒前
ding应助哆啦A梦采纳,获得10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952600
求助须知:如何正确求助?哪些是违规求助? 3498061
关于积分的说明 11090076
捐赠科研通 3228597
什么是DOI,文献DOI怎么找? 1784998
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801344