吸收(声学)
激发态
有机染料
分子
吸收光谱法
有机分子
过程(计算)
光学(聚焦)
航程(航空)
化学
计算机科学
生物系统
材料科学
有机化学
原子物理学
光学
化学工程
物理
工程类
复合材料
生物
操作系统
作者
Yuhong Xia,Guochen Wang,Yuzhuo Lv,Changjin Shao,Zhenqing Yang
标识
DOI:10.1016/j.cplett.2023.141030
摘要
The organic dye molecules have attracted significant attention due to their wide range of potential applications. However, the traditional method is time-consuming, while experimental synthesis methods involve complex processes. To streamline the performance evaluation process, we focus on predicting the absorption spectra of organic dyes without using excited states calculations. We built four prediction models of machine learning algorithms and used them to predict the absorption spectra of organic dyes. We obtained a machine learning model that can efficiently predict the absorption spectrum of dye molecules by optimizing the structure and energy level information of the ground state of dyes.
科研通智能强力驱动
Strongly Powered by AbleSci AI