LAMIS-DMDB: A new full field digital mammography database for breast cancer AI-CAD researches

计算机科学 数字乳腺摄影术 乳腺摄影术 元数据 人工智能 机器学习 乳腺癌 领域(数学) 乳腺癌筛查 乳房成像 推论 数据挖掘 癌症 医学 万维网 数学 内科学 纯数学
作者
Otmani Imane,Mohamed Amroune,Rahmani Foued Lazhar,Hama Soltani,Elhadj Benkhelifa,Aura Conci
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:90: 105823-105823
标识
DOI:10.1016/j.bspc.2023.105823
摘要

The current state of machine learning (ML) and deep learning (DL) shows that they are powerful tools that can be used to glean knowledge from a huge amount of data. While a great deal of research in this area has centered around improving the accuracy and efficiency of training and inference algorithms, there has been relatively little attention paid to the equally important problem of monitoring the quality of data. To tackle this challenge, we have created a cutting-edge breast database capable of employing ML and DL algorithms to detect and classify breast cancer. It is noteworthy that compared to other digital mammogram databases (DMDB), the Laboratory of Mathematics, Informatics and System (LAMIS) images have better resolution and are in full-field digital mammography (FFDM) format. Furthermore, the images can be accessed according to their abnormality (normal, benign, malignant), lesions classification (mass, calcification, architectural distortion, multiple finding), American College of Radiology (ACR) density classification (ACR1, ACR2, ACR3, ACR4) and Breast Imaging Reporting and Data System (BI-RADS). Specifically, the database is designed to provide a variety of metadata as well as clinical data in simple comma separated values (CSV) format that can be really beneficial to the breast cancer research community and to the development of computer-aided diagnosis (CADx) tools that rely on artificial intelligence (AI) algorithms, such as those based on DL models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
柒染完成签到,获得积分10
刚刚
lg应助Zhang采纳,获得10
1秒前
温暖的涵易应助Zhang采纳,获得30
1秒前
1秒前
小程完成签到 ,获得积分10
1秒前
领导范儿应助叶子采纳,获得10
2秒前
2秒前
3秒前
3秒前
AHR发布了新的文献求助10
4秒前
shyotion发布了新的文献求助10
4秒前
小王啵啵发布了新的文献求助10
4秒前
5秒前
韩_发布了新的文献求助20
5秒前
5秒前
共享精神应助hklong采纳,获得10
5秒前
星移发布了新的文献求助10
5秒前
kingwill应助生动曼冬采纳,获得20
5秒前
anlan8888完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
绽放发布了新的文献求助10
7秒前
李莉莉发布了新的文献求助10
8秒前
儒雅的幻然完成签到,获得积分10
8秒前
fmx发布了新的文献求助10
8秒前
Jay完成签到 ,获得积分10
9秒前
回忆lhy完成签到,获得积分10
10秒前
11秒前
danielbest1234完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
背后梦安发布了新的文献求助10
11秒前
蓦回发布了新的文献求助10
12秒前
NexusExplorer应助不会做科研采纳,获得10
12秒前
12秒前
zhouyan发布了新的文献求助10
12秒前
单薄飞莲完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3955094
求助须知:如何正确求助?哪些是违规求助? 3501442
关于积分的说明 11102825
捐赠科研通 3231691
什么是DOI,文献DOI怎么找? 1786550
邀请新用户注册赠送积分活动 870142
科研通“疑难数据库(出版商)”最低求助积分说明 801813