Visible and NIR microscopic hyperspectrum reconstruction from RGB images with deep convolutional neural networks

光学 卷积神经网络 RGB颜色模型 人工智能 迭代重建 可见光谱 计算机科学 计算机视觉 物理
作者
Feng Kunshen,Junfeng Li,Ming Li,Shilong Gao,Deng Weiqi,Haisong Xu,Jing Zhao,Yubin Lan,Yongbing Long,Haixiao Deng
出处
期刊:Optics Express [The Optical Society]
卷期号:32 (3): 4400-4400
标识
DOI:10.1364/oe.510718
摘要

We investigate the microscopic hyperspectral reconstruction from RGB images with a deep convolutional neural network (DCNN) in this paper. Based on the microscopic hyperspectral imaging system, a homemade dataset consisted of microscopic hyperspectral and RGB image pairs is constructed. For considering the importance of spectral correlation between neighbor spectral bands in microscopic hyperspectrum reconstruction, the 2D convolution is replaced by 3D convolution in the DCNN framework, and a metric (weight factor) used to evaluate the performance reconstructed hyperspectrum is also introduced into the loss function used in training. The effects of the dimension of convolution kernel and the weight factor in the loss function on the performance of the reconstruction model are studied. The overall results indicate that our model can show better performance than the traditional models applied to reconstruct the hyperspectral images based on DCNN for the public and the homemade microscopic datasets. In addition, we furthermore explore the microscopic hyperspectrum reconstruction from RGB images in infrared region, and the results show that the model proposed in this paper has great potential to expand the reconstructed hyperspectrum wavelength range from the visible to near infrared bands.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zgh5615完成签到,获得积分10
刚刚
Taki发布了新的文献求助10
刚刚
星辰大海应助Duxize采纳,获得10
2秒前
2秒前
3秒前
cj发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
5秒前
5秒前
6秒前
7秒前
开心夏旋完成签到,获得积分10
7秒前
嘞是举仔应助专注的草丛采纳,获得20
8秒前
好好好完成签到,获得积分10
8秒前
洁净如音完成签到,获得积分10
8秒前
wheeler1发布了新的文献求助10
8秒前
浮云发布了新的文献求助30
9秒前
9秒前
9秒前
Redamancy完成签到,获得积分10
10秒前
盒子完成签到,获得积分20
10秒前
开心夏旋发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
13秒前
13秒前
13秒前
刘耀威完成签到,获得积分20
14秒前
啦11发布了新的文献求助10
14秒前
14秒前
15秒前
传奇3应助浮云采纳,获得10
15秒前
15秒前
情怀应助玩命的糖豆采纳,获得10
15秒前
15秒前
酷波er应助清新的秋白采纳,获得10
15秒前
元谷雪发布了新的文献求助10
16秒前
whiteside完成签到,获得积分10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420