Plant disease recognition in a low data scenario using few-shot learning

弹丸 人工智能 植物病害 计算机科学 模式识别(心理学) 机器学习 生物 生物技术 材料科学 冶金
作者
Masoud Rezaei,Dean Diepeveen,Hamid Laga,M. G. K. Jones,Ferdous Sohel
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:219: 108812-108812 被引量:18
标识
DOI:10.1016/j.compag.2024.108812
摘要

Plant disease is one of the major problems in agriculture. Diseases damage plants, reduce yields and lower the quality of the produce. Traditional approaches to detecting plant diseases are usually based on visual inspection and laboratory testing, which can be expensive and time-consuming. They require trained plant pathologists as well as specialised equipment. Several studies demonstrate that artificial intelligence (AI) methods can produce promising results. However, AI methods are generally data-hungry and require large annotated datasets, and the collection and annotation of such datasets can be a limiting factor. It often appears that only a small amount of data is available for certain disease types. Whereas the performance of typical AI methods drops significantly when they are trained with inadequate data. This paper proposes a novel few-shot learning (FSL) method to detect plant diseases and alleviate the data scarcity problem. The proposed method uses as few as five images per class in the machine learning process. Our method is based on a state-of-the-art FSL pipeline called pre-training, meta-learning, and fine-tuning (PMF), integrated with a novel feature attention (FA) module; we call the overall method PMF+FA. The FA module emphasises the discriminative parts in the image and reduces the impact of complicated backgrounds and undesired objects. We used ResNet50 and Vision Transformers (ViT) as the feature learner. Two publicly available plant disease datasets were repurposed to meet the FSL requirements. We thoroughly evaluated the proposed method on the PlantDoc dataset, which contains disease samples in field environments with complex backgrounds and unwanted objects. The PMF+FA method with ViT achieved an average accuracy of 90.12% in disease recognition. The results demonstrate that the PMF+FA pipeline consistently outperforms the baseline PMF. The results also highlight that the method using ViT generates better results than ResNet50 for diagnosing complex data. ViT and ResNet50 implementations are computationally efficient, taking 1.11 and 0.57 ms on average per image to evaluate the test set respectively. The high throughput and high-quality performance with only a small training dataset indicate that the proposed technique can be used for real-time disease detection in digital farming systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
月亮不知道完成签到,获得积分10
1秒前
xpgy发布了新的文献求助10
1秒前
黄嘉慧完成签到 ,获得积分10
2秒前
zyx发布了新的文献求助30
3秒前
4秒前
观zz完成签到,获得积分10
5秒前
仔仔在完成签到,获得积分10
6秒前
lilplane发布了新的文献求助10
7秒前
tanuki发布了新的文献求助10
7秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
pluto应助科研通管家采纳,获得100
9秒前
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
叮dong应助常超越采纳,获得10
11秒前
巨炮叔叔发布了新的文献求助10
12秒前
隐形蜡烛完成签到,获得积分10
13秒前
孤独的珩完成签到,获得积分10
13秒前
卡卡光波完成签到,获得积分10
17秒前
cdercder应助沉默妙彤采纳,获得10
17秒前
迅速向日葵完成签到,获得积分10
18秒前
lushanxihai发布了新的文献求助10
18秒前
20秒前
xpgy完成签到,获得积分10
20秒前
希望天下0贩的0应助nwds采纳,获得10
20秒前
21秒前
所所应助jkdajsk采纳,获得10
21秒前
21秒前
打打应助过时的浩轩采纳,获得10
22秒前
昏睡的蟠桃给值雨的求助进行了留言
24秒前
awspring发布了新的文献求助10
24秒前
紧张的铃铛完成签到,获得积分10
25秒前
WZQ完成签到,获得积分10
25秒前
无花果应助虾米YYY采纳,获得10
25秒前
ttqql发布了新的文献求助10
26秒前
FashionBoy应助didi采纳,获得10
27秒前
铁柱威武完成签到 ,获得积分10
27秒前
30秒前
30秒前
高分求助中
All the Birds of the World 2000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3717910
求助须知:如何正确求助?哪些是违规求助? 3264569
关于积分的说明 9935013
捐赠科研通 2978368
什么是DOI,文献DOI怎么找? 1633398
邀请新用户注册赠送积分活动 775143
科研通“疑难数据库(出版商)”最低求助积分说明 745402