Validation of the Artificial Intelligence Prognostic Scoring System for Myelodysplastic Syndromes in chronic myelomonocytic leukaemia: A novel approach for improved risk stratification

危险分层 骨髓增生异常综合症 慢性粒单核细胞白血病 医学 肿瘤科 国际预后积分系统 内科学 骨髓
作者
Adrián Mosquera Orgueira,Manuel Mateo Pérez Encinas,Nicolás Díaz Varela,Yu‐Hung Wang,Elvira Mora,Marina Díaz‐Beyá,María Julia Montoro,Helena Pomares Marin,Fernando Ramos,Mar Tormo,Andrés Jerez,Josep F. Nomdedéu,Carlos De Miguel Sánchez,Leonor Arenillas,Paula Cárcel,María‐Teresa Cedena,Blanca Xicoy,Eugenia Rivero Arango,Rafael Andrés Del Orbe Barreto,Luis Benlloch,Chien‐Chin Lin,Hwei‐Fang Tien,Carlos Míguez,Davide Crucitti,María Diez‐Campelo,David Valcárcel
出处
期刊:British Journal of Haematology [Wiley]
卷期号:204 (4): 1529-1535
标识
DOI:10.1111/bjh.19341
摘要

Chronic myelomonocytic leukaemia (CMML) is a rare haematological disorder characterized by monocytosis and dysplastic changes in myeloid cell lineages. Accurate risk stratification is essential for guiding treatment decisions and assessing prognosis. This study aimed to validate the Artificial Intelligence Prognostic Scoring System for Myelodysplastic Syndromes (AIPSS-MDS) in CMML and to assess its performance compared with traditional scores using data from a Spanish registry (n = 1343) and a Taiwanese hospital (n = 75). In the Spanish cohort, the AIPSS-MDS accurately predicted overall survival (OS) and leukaemia-free survival (LFS), outperforming the Revised-IPSS score. Similarly, in the Taiwanese cohort, the AIPSS-MDS demonstrated accurate predictions for OS and LFS, showing superiority over the IPSS score and performing better than the CPSS and molecular CPSS scores in differentiating patient outcomes. The consistent performance of the AIPSS-MDS across both cohorts highlights its generalizability. Its adoption as a valuable tool for personalized treatment decision-making in CMML enables clinicians to identify high-risk patients who may benefit from different therapeutic interventions. Future studies should explore the integration of genetic information into the AIPSS-MDS to further refine risk stratification in CMML and improve patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wait完成签到,获得积分10
刚刚
sijiong_han应助lixuanhao采纳,获得10
刚刚
刚刚
无极微光应助Kizuna采纳,获得20
2秒前
wanci应助小鹿采纳,获得10
2秒前
深情安青应助何以故人初采纳,获得10
2秒前
逆光完成签到 ,获得积分10
2秒前
Lucas应助醉熏的绯采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
研友_rLmrgn应助科研通管家采纳,获得10
3秒前
大宝君应助科研通管家采纳,获得20
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得30
3秒前
3秒前
大模型应助科研通管家采纳,获得10
3秒前
FF完成签到,获得积分10
3秒前
大个应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
葉芊羽发布了新的文献求助10
4秒前
乐观小之应助sunzhuxi采纳,获得10
6秒前
6秒前
健忘的曼青关注了科研通微信公众号
9秒前
耶耶完成签到,获得积分10
11秒前
脑洞疼应助zhogwe采纳,获得10
11秒前
13秒前
13秒前
含糊的钢笔完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735868
求助须知:如何正确求助?哪些是违规求助? 5363199
关于积分的说明 15331638
捐赠科研通 4879999
什么是DOI,文献DOI怎么找? 2622459
邀请新用户注册赠送积分活动 1571448
关于科研通互助平台的介绍 1528243