Autonomous reaction Pareto-front mapping with a self-driving catalysis laboratory

氢甲酰化 催化作用 吞吐量 标杆管理 计算机科学 化学 工艺工程 工程类 有机化学 电信 营销 业务 无线
作者
Jeffrey A. Bennett,Negin Orouji,Muhammad Babar Khan,Sina Sadeghi,Jordan Rodgers,Milad Abolhasani
标识
DOI:10.1038/s44286-024-00033-5
摘要

Ligands play a crucial role in enabling challenging chemical transformations with transition metal-mediated homogeneous catalysts. Despite their undisputed role in homogeneous catalysis, discovery and development of ligands have proven to be a challenging and resource-intensive undertaking. Here, in response, we present a self-driving catalysis laboratory, Fast-Cat, for autonomous and resource-efficient parameter space navigation and Pareto-front mapping of high-temperature, high-pressure, gas–liquid reactions. Fast-Cat enables autonomous ligand benchmarking and multi-objective catalyst performance evaluation with minimal human intervention. Specifically, we utilize Fast-Cat to perform rapid Pareto-front identification of the hydroformylation reaction between syngas (CO and H2) and olefin (1-octene) in the presence of rhodium and various classes of phosphorus-based ligands. By reactor benchmarking, we demonstrate Fast-Cat's knowledge scalability, essential to fine/specialty chemical industries. We report the details of the modular flow chemistry platform of Fast-Cat and its autonomous experiment-selection strategy for the rapid generation of optimized experimental conditions and in-house data required for supplying machine-learning approaches to reaction and ligand investigations. A self-driving catalysis laboratory, Fast-Cat, is presented for efficient high-throughput screening of high-pressure, high-temperature, gas–liquid reaction conditions using rhodium-catalyzed hydroformylation as a case study. Fast-Cat is used to Pareto map the reaction space and investigate the varying performance of several phosphorus-based hydroformylation ligands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粥粥完成签到 ,获得积分10
1秒前
1秒前
爆米花应助daqisong采纳,获得10
1秒前
元2333发布了新的文献求助20
1秒前
1秒前
爆米花应助小椰采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
烟花应助vv采纳,获得10
2秒前
3秒前
3秒前
小蘑菇应助Gnor采纳,获得10
3秒前
星辰大海应助机灵的南蕾采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
qqxin完成签到,获得积分20
3秒前
3秒前
池寒1完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
xy完成签到 ,获得积分10
5秒前
AL发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
qqxin发布了新的文献求助10
6秒前
Ava应助why911采纳,获得10
7秒前
lhxing发布了新的文献求助20
7秒前
sule发布了新的文献求助10
8秒前
所所应助wenwen采纳,获得10
8秒前
万能图书馆应助王博雅采纳,获得10
8秒前
8秒前
李健应助lll采纳,获得10
9秒前
慕青应助Lilysound采纳,获得10
9秒前
青筠发布了新的文献求助10
10秒前
妩媚的夜柳完成签到 ,获得积分10
10秒前
赘婿应助白糖采纳,获得10
10秒前
无情的猎豹完成签到 ,获得积分10
10秒前
10秒前
为什么完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727863
求助须知:如何正确求助?哪些是违规求助? 5310392
关于积分的说明 15312447
捐赠科研通 4875237
什么是DOI,文献DOI怎么找? 2618649
邀请新用户注册赠送积分活动 1568278
关于科研通互助平台的介绍 1524932