Visible and Infrared Image Fusion for Object Detection: A Survey

计算机视觉 红外线的 图像融合 人工智能 融合 计算机科学 对象(语法) 图像(数学) 物理 光学 语言学 哲学
作者
Yuxuan Sun,Yuanqin Meng,Qingbo Wang,Minghua Tang,Tao Shen,Qingwang Wang
出处
期刊:Lecture notes in electrical engineering 卷期号:: 236-248 被引量:1
标识
DOI:10.1007/978-981-97-0855-0_24
摘要

Thanks to the advancements of Deep Learning (DL) Algorithms. DL-based object detection models has witnessed remarkable success in the past few years. By leveraging deep convolutional neural networks (CNNs) and other deep learning models, rich feature representations can be effectively extracted from visible (RGB) images for object detection. However, for challenging scenarios such as low-light conditions and haze, the performance of object detection using visible images is often not satisfactory. On the other hand, thermal camera, which is unaffected by lighting conditions, can penetrate through low-light and hazy environments to capture object images. However, infrared images lack edge and texture information of objects. Recognizing the complementary nature of visible and infrared images, researchers have explored the fusion of visible and infrared images for object detection, yielding promising research outcomes. This paper provides an analysis of the current research status of visible and infrared image fusion for object detection. Firstly, the fusion models are categorized into three kinds: pixel-level fusion, feature-level fusion, and decision-level fusion. Several models within each category are discussed. Furthermore, this paper summarizes five datasets that can be utilized for training RGB-Infrared object detection models and compares the experimental results of selected models on the KAIST dataset. Lastly, the paper concludes with a summary of existing challenges in the field and offers some reflections on future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快去看文献关注了科研通微信公众号
1秒前
2秒前
4秒前
4秒前
阿斌发布了新的文献求助10
5秒前
5秒前
5秒前
剧院的饭桶完成签到,获得积分10
5秒前
shihui发布了新的文献求助10
5秒前
柚子发布了新的文献求助10
7秒前
ZCY完成签到,获得积分10
7秒前
锂炸发布了新的文献求助10
7秒前
黑暗系发布了新的文献求助10
7秒前
7秒前
7秒前
Mia完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
神勇的豁完成签到,获得积分10
8秒前
赘婿应助ZHIXIANGWENG采纳,获得10
8秒前
shinhung发布了新的文献求助10
8秒前
所所应助ZHIXIANGWENG采纳,获得10
9秒前
小蘑菇应助ZHIXIANGWENG采纳,获得10
9秒前
Jasper应助ZHIXIANGWENG采纳,获得10
9秒前
Hello应助ZHIXIANGWENG采纳,获得10
9秒前
852应助ZHIXIANGWENG采纳,获得10
9秒前
yae应助ZHIXIANGWENG采纳,获得10
9秒前
打打应助ZHIXIANGWENG采纳,获得10
9秒前
斯文败类应助ZHIXIANGWENG采纳,获得10
9秒前
uzumay发布了新的文献求助30
9秒前
谷粱发布了新的文献求助10
10秒前
酷酷的蚂蚁完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
好好发布了新的文献求助10
11秒前
ycy完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543600
求助须知:如何正确求助?哪些是违规求助? 3120949
关于积分的说明 9344906
捐赠科研通 2818967
什么是DOI,文献DOI怎么找? 1549876
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126