An Intelligent Early Warning System for Harmful Algal Blooms: Harnessing the Power of Big Data and Deep Learning

水华 预警系统 大数据 环境科学 预警系统 深度学习 海洋学 计算机科学 气象学 人工智能 电信 地质学 地理 生物 生态学 数据挖掘 浮游植物 营养物
作者
Jing Qian,Li Qian,Nan Pu,Yonghong Bi,Andre Wilhelms,Stefan Norra
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (35): 15607-15618 被引量:8
标识
DOI:10.1021/acs.est.3c03906
摘要

Harmful algal blooms (HABs) pose a significant ecological threat and economic detriment to freshwater environments. In order to develop an intelligent early warning system for HABs, big data and deep learning models were harnessed in this study. Data collection was achieved utilizing the vertical aquatic monitoring system (VAMS). Subsequently, the analysis and stratification of the vertical aquatic layer were conducted employing the "DeepDPM-Spectral Clustering" method. This approach drastically reduced the number of predictive models and enhanced the adaptability of the system. The Bloomformer-2 model was developed to conduct both single-step and multistep predictions of Chl-a, integrating the " Alert Level Framework" issued by the World Health Organization to accomplish early warning for HABs. The case study conducted in Taihu Lake revealed that during the winter of 2018, the water column could be partitioned into four clusters (Groups W1-W4), while in the summer of 2019, the water column could be partitioned into five clusters (Groups S1-S5). Moreover, in a subsequent predictive task, Bloomformer-2 exhibited superiority in performance across all clusters for both the winter of 2018 and the summer of 2019 (MAE: 0.175-0.394, MSE: 0.042-0.305, and MAPE: 0.228-2.279 for single-step prediction; MAE: 0.184-0.505, MSE: 0.101-0.378, and MAPE: 0.243-4.011 for multistep prediction). The prediction for the 3 days indicated that Group W1 was in a Level I alert state at all times. Conversely, Group S1 was mainly under an Level I alert, with seven specific time points escalating to a Level II alert. Furthermore, the end-to-end architecture of this system, coupled with the automation of its various processes, minimized human intervention, endowing it with intelligent characteristics. This research highlights the transformative potential of integrating big data and artificial intelligence in environmental management and emphasizes the importance of model interpretability in machine learning applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zou完成签到,获得积分10
刚刚
忆茶戏发布了新的文献求助10
1秒前
酷波er应助幸运星采纳,获得10
3秒前
华仔应助张雯思采纳,获得10
3秒前
CipherSage应助张雯思采纳,获得30
3秒前
星辰大海应助张雯思采纳,获得10
3秒前
搜集达人应助张雯思采纳,获得10
3秒前
3秒前
田様应助Cl1audia采纳,获得10
3秒前
123发布了新的文献求助10
4秒前
4秒前
搜集达人应助Ma采纳,获得10
4秒前
大模型应助孟欣玥采纳,获得10
4秒前
木可发布了新的文献求助10
5秒前
泊頔完成签到,获得积分10
7秒前
lrq发布了新的文献求助10
8秒前
8秒前
wwl关闭了wwl文献求助
10秒前
mr_chxb82发布了新的文献求助10
10秒前
阿智完成签到,获得积分10
10秒前
大写的LV完成签到 ,获得积分10
11秒前
麦子发布了新的文献求助10
12秒前
852应助wbh采纳,获得10
13秒前
17秒前
lzx发布了新的文献求助10
18秒前
王彩香发布了新的文献求助10
19秒前
五六七发布了新的文献求助150
20秒前
20秒前
mr_chxb82完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
小二郎应助麦子采纳,获得10
22秒前
清脆凡阳完成签到 ,获得积分10
22秒前
香蕉觅云应助小晓采纳,获得10
23秒前
科研通AI2S应助wwl采纳,获得10
25秒前
28秒前
眉间尺完成签到,获得积分10
30秒前
DC发布了新的文献求助10
31秒前
我们发布了新的文献求助10
33秒前
贪玩的野狍子完成签到,获得积分20
34秒前
、、、完成签到,获得积分10
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174