An Intelligent Early Warning System for Harmful Algal Blooms: Harnessing the Power of Big Data and Deep Learning

水华 预警系统 大数据 环境科学 预警系统 深度学习 海洋学 计算机科学 气象学 人工智能 电信 地质学 地理 生物 生态学 数据挖掘 浮游植物 营养物
作者
Jing Qian,Li Qian,Nan Pu,Yonghong Bi,Andre Wilhelms,Stefan Norra
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (35): 15607-15618 被引量:2
标识
DOI:10.1021/acs.est.3c03906
摘要

Harmful algal blooms (HABs) pose a significant ecological threat and economic detriment to freshwater environments. In order to develop an intelligent early warning system for HABs, big data and deep learning models were harnessed in this study. Data collection was achieved utilizing the vertical aquatic monitoring system (VAMS). Subsequently, the analysis and stratification of the vertical aquatic layer were conducted employing the "DeepDPM-Spectral Clustering" method. This approach drastically reduced the number of predictive models and enhanced the adaptability of the system. The Bloomformer-2 model was developed to conduct both single-step and multistep predictions of Chl-a, integrating the " Alert Level Framework" issued by the World Health Organization to accomplish early warning for HABs. The case study conducted in Taihu Lake revealed that during the winter of 2018, the water column could be partitioned into four clusters (Groups W1-W4), while in the summer of 2019, the water column could be partitioned into five clusters (Groups S1-S5). Moreover, in a subsequent predictive task, Bloomformer-2 exhibited superiority in performance across all clusters for both the winter of 2018 and the summer of 2019 (MAE: 0.175-0.394, MSE: 0.042-0.305, and MAPE: 0.228-2.279 for single-step prediction; MAE: 0.184-0.505, MSE: 0.101-0.378, and MAPE: 0.243-4.011 for multistep prediction). The prediction for the 3 days indicated that Group W1 was in a Level I alert state at all times. Conversely, Group S1 was mainly under an Level I alert, with seven specific time points escalating to a Level II alert. Furthermore, the end-to-end architecture of this system, coupled with the automation of its various processes, minimized human intervention, endowing it with intelligent characteristics. This research highlights the transformative potential of integrating big data and artificial intelligence in environmental management and emphasizes the importance of model interpretability in machine learning applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SSSS完成签到,获得积分10
1秒前
yy14207发布了新的文献求助10
1秒前
许钟一发布了新的文献求助10
1秒前
1秒前
1秒前
小胳膊细腿完成签到,获得积分10
1秒前
自由度完成签到,获得积分10
2秒前
ice7应助段采萱采纳,获得10
3秒前
勿忘9451发布了新的文献求助10
4秒前
米饭辣椒完成签到,获得积分10
4秒前
4秒前
刘机智完成签到,获得积分20
5秒前
5秒前
尊敬乐蕊发布了新的文献求助10
6秒前
只穿平头裤衩完成签到,获得积分10
7秒前
7秒前
上官若男应助小胳膊细腿采纳,获得10
7秒前
小镇的废物完成签到,获得积分10
8秒前
自信的完成签到,获得积分10
8秒前
9秒前
爆米花应助亚琛求文献采纳,获得10
9秒前
南南发布了新的文献求助10
9秒前
情怀应助开心便当采纳,获得10
9秒前
10秒前
yzx发布了新的文献求助10
10秒前
10秒前
桑榆。发布了新的文献求助10
11秒前
11秒前
DW发布了新的文献求助10
12秒前
YZJing完成签到,获得积分10
13秒前
科研通AI2S应助儒雅南风采纳,获得10
14秒前
14秒前
小伊完成签到,获得积分20
15秒前
15秒前
16秒前
yiy发布了新的文献求助30
16秒前
11发布了新的文献求助10
16秒前
ttttt发布了新的文献求助10
16秒前
anmeiii发布了新的文献求助10
16秒前
科研通AI2S应助Sally采纳,获得10
17秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160172
求助须知:如何正确求助?哪些是违规求助? 2811172
关于积分的说明 7891237
捐赠科研通 2470284
什么是DOI,文献DOI怎么找? 1315398
科研通“疑难数据库(出版商)”最低求助积分说明 630828
版权声明 602022