An Intelligent Early Warning System for Harmful Algal Blooms: Harnessing the Power of Big Data and Deep Learning

水华 预警系统 大数据 环境科学 预警系统 深度学习 海洋学 计算机科学 气象学 人工智能 电信 地质学 地理 生物 生态学 数据挖掘 浮游植物 营养物
作者
Jing Qian,Li Qian,Nan Pu,Yonghong Bi,Andre Wilhelms,Stefan Norra
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (35): 15607-15618 被引量:20
标识
DOI:10.1021/acs.est.3c03906
摘要

Harmful algal blooms (HABs) pose a significant ecological threat and economic detriment to freshwater environments. In order to develop an intelligent early warning system for HABs, big data and deep learning models were harnessed in this study. Data collection was achieved utilizing the vertical aquatic monitoring system (VAMS). Subsequently, the analysis and stratification of the vertical aquatic layer were conducted employing the "DeepDPM-Spectral Clustering" method. This approach drastically reduced the number of predictive models and enhanced the adaptability of the system. The Bloomformer-2 model was developed to conduct both single-step and multistep predictions of Chl-a, integrating the " Alert Level Framework" issued by the World Health Organization to accomplish early warning for HABs. The case study conducted in Taihu Lake revealed that during the winter of 2018, the water column could be partitioned into four clusters (Groups W1-W4), while in the summer of 2019, the water column could be partitioned into five clusters (Groups S1-S5). Moreover, in a subsequent predictive task, Bloomformer-2 exhibited superiority in performance across all clusters for both the winter of 2018 and the summer of 2019 (MAE: 0.175-0.394, MSE: 0.042-0.305, and MAPE: 0.228-2.279 for single-step prediction; MAE: 0.184-0.505, MSE: 0.101-0.378, and MAPE: 0.243-4.011 for multistep prediction). The prediction for the 3 days indicated that Group W1 was in a Level I alert state at all times. Conversely, Group S1 was mainly under an Level I alert, with seven specific time points escalating to a Level II alert. Furthermore, the end-to-end architecture of this system, coupled with the automation of its various processes, minimized human intervention, endowing it with intelligent characteristics. This research highlights the transformative potential of integrating big data and artificial intelligence in environmental management and emphasizes the importance of model interpretability in machine learning applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
狒狒完成签到,获得积分20
刚刚
安宁发布了新的文献求助10
刚刚
peiyy完成签到,获得积分10
刚刚
研友_8y2G0L发布了新的文献求助10
1秒前
1秒前
1秒前
科研通AI6应助亭子采纳,获得10
1秒前
科研小助理完成签到,获得积分10
2秒前
苏苏完成签到,获得积分10
2秒前
3秒前
xinbowey完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
LCC发布了新的文献求助10
4秒前
来自二教的神秘力量完成签到,获得积分10
4秒前
5秒前
打打应助LeeSunE采纳,获得30
6秒前
6秒前
Henvy完成签到,获得积分10
6秒前
6秒前
XUXU发布了新的文献求助10
7秒前
7秒前
香蕉觅云应助xzh采纳,获得10
7秒前
脑洞疼应助樂楽采纳,获得10
7秒前
xksy完成签到,获得积分10
7秒前
weiericwang发布了新的文献求助10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
濮阳芷蕊应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
8秒前
山月完成签到 ,获得积分10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
kkuang发布了新的文献求助10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524349
求助须知:如何正确求助?哪些是违规求助? 4614939
关于积分的说明 14545569
捐赠科研通 4552859
什么是DOI,文献DOI怎么找? 2495047
邀请新用户注册赠送积分活动 1475675
关于科研通互助平台的介绍 1447419