Content Promotion for Online Content Platforms with the Diffusion Effect

晋升(国际象棋) 扩散 估计员 内容(测量理论) 计算机科学 普通最小二乘法 过程(计算) 数学优化 机器学习 统计 数学 热力学 操作系统 法学 政治学 政治 物理 数学分析
作者
Yunduan Lin,M Wang,Heng Zhang,Renyu Zhang,Zuo‐Jun Max Shen
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (3): 1062-1081 被引量:2
标识
DOI:10.1287/msom.2022.0172
摘要

Problem definition: Content promotion policies are crucial for online content platforms to improve content consumption and user engagement. However, traditional promotion policies generally neglect the diffusion effect within a crowd of users. In this paper, we study the candidate generation and promotion optimization (CGPO) problem for an online content platform, emphasizing the incorporation of the diffusion effect. Methodology/results: We propose a diffusion model that incorporates platform promotion decisions to characterize the adoption process of online content. Based on this diffusion model, we formulate the CGPO problem as a mixed-integer program with nonconvex and nonlinear constraints, which is proved to be NP-hard. Additionally, we investigate methods for estimating the diffusion model parameters using available online platform data and introduce novel double ordinary least squares (D-OLS) estimators. We prove the submodularity of the objective function for the CGPO problem, which enables us to find an efficient [Formula: see text]-approximation greedy solution. Furthermore, we demonstrate that the D-OLS estimators are consistent and have smaller asymptotic variances than traditional ordinary least squares estimators. By utilizing real data from a large-scale video-sharing platform, we show that our diffusion model effectively characterizes the adoption process of online content. Compared with the policy implemented on the platform, our proposed promotion policy increases total adoptions by 49.90%. Managerial implications: Our research highlights the essential role of diffusion in online content and provides actionable insights for online content platforms to optimize their content promotion policies by leveraging our diffusion model. Funding: R. Zhang is grateful for the financial support from the Hong Kong Research Grants Council General Research Fund [Grants 14502722 and 14504123] and the National Natural Science Foundation of China [Grant 72293560/72293565]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0172 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白完成签到,获得积分10
刚刚
ste56完成签到,获得积分10
1秒前
香蕉冰真完成签到 ,获得积分10
1秒前
Zhang完成签到,获得积分10
2秒前
3秒前
gmchen完成签到,获得积分10
3秒前
ivan完成签到,获得积分10
3秒前
3秒前
CipherSage应助FG采纳,获得10
4秒前
微笑念薇完成签到,获得积分10
4秒前
4秒前
加菲丰丰应助sunnan0321采纳,获得20
4秒前
炒蛋汉堡完成签到,获得积分10
4秒前
含蓄嫣然完成签到,获得积分10
4秒前
George完成签到,获得积分10
5秒前
yxy发布了新的文献求助10
5秒前
5秒前
Yuxuan2024完成签到,获得积分10
5秒前
老实皮卡丘完成签到 ,获得积分10
5秒前
yamoon完成签到,获得积分10
5秒前
5秒前
6秒前
gxpjzbg完成签到,获得积分10
6秒前
温言完成签到,获得积分10
7秒前
调研昵称发布了新的文献求助10
7秒前
彼方的宁静与热烈完成签到,获得积分10
8秒前
fgh完成签到 ,获得积分10
8秒前
9秒前
9秒前
hihi完成签到,获得积分0
9秒前
9秒前
9秒前
9秒前
10秒前
领导范儿应助旅行的天空采纳,获得10
11秒前
木木木木完成签到,获得积分10
11秒前
打打应助hahaer采纳,获得30
12秒前
聪明飞雪发布了新的文献求助10
12秒前
寒冷荧荧完成签到,获得积分10
12秒前
12秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143062
求助须知:如何正确求助?哪些是违规求助? 2794082
关于积分的说明 7809850
捐赠科研通 2450395
什么是DOI,文献DOI怎么找? 1303818
科研通“疑难数据库(出版商)”最低求助积分说明 627066
版权声明 601384