Content Promotion for Online Content Platforms with the Diffusion Effect

晋升(国际象棋) 扩散 估计员 内容(测量理论) 计算机科学 普通最小二乘法 过程(计算) 数学优化 机器学习 统计 数学 热力学 操作系统 法学 政治学 政治 物理 数学分析
作者
Yunduan Lin,Mengxin Wang,Heng Zhang,Renyu Zhang,Zuo‐Jun Max Shen
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (3): 1062-1081 被引量:4
标识
DOI:10.1287/msom.2022.0172
摘要

Problem definition: Content promotion policies are crucial for online content platforms to improve content consumption and user engagement. However, traditional promotion policies generally neglect the diffusion effect within a crowd of users. In this paper, we study the candidate generation and promotion optimization (CGPO) problem for an online content platform, emphasizing the incorporation of the diffusion effect. Methodology/results: We propose a diffusion model that incorporates platform promotion decisions to characterize the adoption process of online content. Based on this diffusion model, we formulate the CGPO problem as a mixed-integer program with nonconvex and nonlinear constraints, which is proved to be NP-hard. Additionally, we investigate methods for estimating the diffusion model parameters using available online platform data and introduce novel double ordinary least squares (D-OLS) estimators. We prove the submodularity of the objective function for the CGPO problem, which enables us to find an efficient [Formula: see text]-approximation greedy solution. Furthermore, we demonstrate that the D-OLS estimators are consistent and have smaller asymptotic variances than traditional ordinary least squares estimators. By utilizing real data from a large-scale video-sharing platform, we show that our diffusion model effectively characterizes the adoption process of online content. Compared with the policy implemented on the platform, our proposed promotion policy increases total adoptions by 49.90%. Managerial implications: Our research highlights the essential role of diffusion in online content and provides actionable insights for online content platforms to optimize their content promotion policies by leveraging our diffusion model. Funding: R. Zhang is grateful for the financial support from the Hong Kong Research Grants Council General Research Fund [Grants 14502722 and 14504123] and the National Natural Science Foundation of China [Grant 72293560/72293565]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0172 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喔喔发布了新的文献求助10
1秒前
2秒前
xiangdannuli完成签到,获得积分10
4秒前
未晚完成签到,获得积分10
5秒前
zcy发布了新的文献求助10
5秒前
7秒前
tangyong完成签到,获得积分10
8秒前
小二郎应助迅速文龙采纳,获得10
8秒前
迷人依白发布了新的文献求助10
8秒前
李xx完成签到,获得积分10
9秒前
zhihe完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
所所应助Thea采纳,获得30
10秒前
11秒前
复杂慕蕊完成签到,获得积分10
11秒前
bless发布了新的文献求助10
12秒前
Hello应助YY采纳,获得10
12秒前
可达鸭应助YXH采纳,获得10
14秒前
CF完成签到,获得积分10
14秒前
Orange应助霜鸣采纳,获得10
16秒前
时尚俊驰发布了新的文献求助10
16秒前
Cyris完成签到,获得积分10
16秒前
16秒前
三旬完成签到,获得积分10
17秒前
香蕉耳机完成签到 ,获得积分20
17秒前
感谢你的帮助完成签到,获得积分10
18秒前
思源应助H-C采纳,获得10
18秒前
19秒前
19秒前
澳洲小肥牛完成签到,获得积分10
20秒前
22秒前
应化打工人完成签到,获得积分10
22秒前
QW发布了新的文献求助10
23秒前
23秒前
24秒前
情怀应助bless采纳,获得10
24秒前
迅速文龙发布了新的文献求助10
24秒前
李健应助时尚俊驰采纳,获得10
25秒前
25秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959564
求助须知:如何正确求助?哪些是违规求助? 3505819
关于积分的说明 11126349
捐赠科研通 3237712
什么是DOI,文献DOI怎么找? 1789318
邀请新用户注册赠送积分活动 871669
科研通“疑难数据库(出版商)”最低求助积分说明 802951