DFBU-Net: Double-branch flat bottom U-Net for efficient medical image segmentation

计算机科学 分割 人工智能 增采样 正确性 瓶颈 深度学习 模式识别(心理学) 图像(数学) 计算机视觉 算法 嵌入式系统
作者
Hao Yin,Yi Wang,Jing Wen,Guangxian Wang,Bo Lin,Weibin Yang,Jian Ruan,Yi Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:90: 105818-105818 被引量:7
标识
DOI:10.1016/j.bspc.2023.105818
摘要

In the field of medical image processing, segmenting tissues and organs in CT/MRI and other medical sequence images is a vital yet challenging task. Analyzing the MICCAI competition, we have identified two problems in current methods for medical image organ segmentation: (1) There is a bottleneck in organ segmentation, with marginal room for improvement, as algorithmic capabilities have already surpassed the task's inherent difficulty. (2) Most current research focuses on stacking and enhancing new modules for segmentation while overlooking the inherent characteristics of medical sequence images. To overcome these two problems, firstly, we have encapsulated the three characteristics of CT/MRI medical sequence image segmentation: semantic correctness, edge accuracy, and 3D structure. Secondly, we delved into the most information-rich downsampling stage in terms of detail and semantics. Subsequently, we designed a flat-bottom double-branch network (DFBU-Net) based on the U-Net architecture. The high-resolution flat bottom branch of this network maintained a 1/4 feature map size to ensure the preservation of rich detail information, while the low-resolution branch underwent progressive downsampling to capture more semantic information. To prevent information loss, cross-fusion was performed at each stage of the model's two branches. Finally, DFBU-Net was evaluated on the MICCAI FLARE2021 dataset (DSC:93.61%, NSD:85.01%). Particularly, in the challenging task of pancreatic segmentation, our model outperformed the first-place model by 0.72% in DSC and 2.92% in NSD. Furthermore, in the MICCAI PARSE2022 competition, DFBU-Net ranked ninth with a DICE score of 79.28%, demonstrating its excellent segmentation performance and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
学医的小柒完成签到,获得积分10
1秒前
2秒前
马华化完成签到,获得积分0
2秒前
酷波er应助繁荣的梦曼采纳,获得10
2秒前
3秒前
lvsoul应助小张采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助150
3秒前
4秒前
4秒前
4秒前
未来可期发布了新的文献求助30
5秒前
沉默诗兰发布了新的文献求助10
6秒前
傲娇妙梦发布了新的文献求助10
7秒前
喜多发布了新的文献求助10
9秒前
10秒前
10秒前
呐呐呐发布了新的文献求助10
10秒前
12秒前
aliu发布了新的文献求助10
13秒前
13秒前
Lucas应助清爽的又夏采纳,获得10
14秒前
14秒前
九离发布了新的文献求助10
15秒前
15秒前
精明的盼雁完成签到,获得积分10
16秒前
米奇完成签到 ,获得积分10
16秒前
积极太清发布了新的文献求助10
16秒前
jam发布了新的文献求助10
17秒前
侯笑笑发布了新的文献求助10
18秒前
18秒前
西高所发布了新的文献求助10
19秒前
Zyou发布了新的文献求助50
19秒前
嘴角上扬完成签到,获得积分10
19秒前
七里香完成签到 ,获得积分10
20秒前
冰姗完成签到,获得积分10
20秒前
大个应助帅气的科研男孩采纳,获得10
21秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4962977
求助须知:如何正确求助?哪些是违规求助? 4222772
关于积分的说明 13151830
捐赠科研通 4007246
什么是DOI,文献DOI怎么找? 2193355
邀请新用户注册赠送积分活动 1207001
关于科研通互助平台的介绍 1119207