DFBU-Net: Double-branch flat bottom U-Net for efficient medical image segmentation

计算机科学 分割 人工智能 增采样 正确性 瓶颈 深度学习 模式识别(心理学) 图像(数学) 计算机视觉 算法 嵌入式系统
作者
Hao Yin,Yi Wang,Jing Wen,Guangxian Wang,Bo Lin,Weibin Yang,Jian Ruan,Yi Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:90: 105818-105818 被引量:7
标识
DOI:10.1016/j.bspc.2023.105818
摘要

In the field of medical image processing, segmenting tissues and organs in CT/MRI and other medical sequence images is a vital yet challenging task. Analyzing the MICCAI competition, we have identified two problems in current methods for medical image organ segmentation: (1) There is a bottleneck in organ segmentation, with marginal room for improvement, as algorithmic capabilities have already surpassed the task's inherent difficulty. (2) Most current research focuses on stacking and enhancing new modules for segmentation while overlooking the inherent characteristics of medical sequence images. To overcome these two problems, firstly, we have encapsulated the three characteristics of CT/MRI medical sequence image segmentation: semantic correctness, edge accuracy, and 3D structure. Secondly, we delved into the most information-rich downsampling stage in terms of detail and semantics. Subsequently, we designed a flat-bottom double-branch network (DFBU-Net) based on the U-Net architecture. The high-resolution flat bottom branch of this network maintained a 1/4 feature map size to ensure the preservation of rich detail information, while the low-resolution branch underwent progressive downsampling to capture more semantic information. To prevent information loss, cross-fusion was performed at each stage of the model's two branches. Finally, DFBU-Net was evaluated on the MICCAI FLARE2021 dataset (DSC:93.61%, NSD:85.01%). Particularly, in the challenging task of pancreatic segmentation, our model outperformed the first-place model by 0.72% in DSC and 2.92% in NSD. Furthermore, in the MICCAI PARSE2022 competition, DFBU-Net ranked ninth with a DICE score of 79.28%, demonstrating its excellent segmentation performance and generalization ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小雨完成签到,获得积分10
1秒前
小黄瓜896发布了新的文献求助10
2秒前
小鱼儿完成签到,获得积分10
3秒前
屿鑫完成签到,获得积分10
4秒前
慕青应助小黄瓜896采纳,获得10
12秒前
自信鞯完成签到,获得积分10
12秒前
12秒前
freebird完成签到,获得积分10
13秒前
feiyang完成签到,获得积分10
13秒前
学术小白完成签到 ,获得积分10
14秒前
Light完成签到,获得积分10
14秒前
纳古菌完成签到,获得积分10
14秒前
JamesPei应助huang采纳,获得10
15秒前
白小超人完成签到 ,获得积分10
15秒前
cc发布了新的文献求助10
15秒前
当时的发布了新的文献求助30
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
橙子是不是完成签到,获得积分10
19秒前
郭莹莹发布了新的文献求助10
19秒前
ding应助粥粥粥采纳,获得10
20秒前
Gaowenjie完成签到,获得积分20
21秒前
蓝天发布了新的文献求助10
22秒前
23秒前
ACCEPT完成签到,获得积分10
23秒前
outbed完成签到,获得积分10
24秒前
宋晓静完成签到,获得积分10
25秒前
都要多喝水完成签到,获得积分10
25秒前
mumu发布了新的文献求助10
26秒前
陆陆完成签到 ,获得积分10
26秒前
26秒前
个性慕卉完成签到,获得积分10
27秒前
图图完成签到 ,获得积分10
27秒前
cc完成签到,获得积分10
27秒前
27秒前
领导范儿应助科研通管家采纳,获得10
29秒前
Hello应助科研通管家采纳,获得10
29秒前
wwy应助科研通管家采纳,获得10
29秒前
爆米花应助科研通管家采纳,获得10
29秒前
思源应助科研通管家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603632
求助须知:如何正确求助?哪些是违规求助? 4688639
关于积分的说明 14855202
捐赠科研通 4694366
什么是DOI,文献DOI怎么找? 2540896
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471806