DFBU-Net: Double-branch flat bottom U-Net for efficient medical image segmentation

计算机科学 分割 人工智能 增采样 正确性 瓶颈 深度学习 模式识别(心理学) 图像(数学) 计算机视觉 算法 嵌入式系统
作者
Hao Yin,Yi Wang,Jing Wen,Guangxian Wang,Bo Lin,Weibin Yang,Jian Ruan,Yi Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:90: 105818-105818 被引量:7
标识
DOI:10.1016/j.bspc.2023.105818
摘要

In the field of medical image processing, segmenting tissues and organs in CT/MRI and other medical sequence images is a vital yet challenging task. Analyzing the MICCAI competition, we have identified two problems in current methods for medical image organ segmentation: (1) There is a bottleneck in organ segmentation, with marginal room for improvement, as algorithmic capabilities have already surpassed the task's inherent difficulty. (2) Most current research focuses on stacking and enhancing new modules for segmentation while overlooking the inherent characteristics of medical sequence images. To overcome these two problems, firstly, we have encapsulated the three characteristics of CT/MRI medical sequence image segmentation: semantic correctness, edge accuracy, and 3D structure. Secondly, we delved into the most information-rich downsampling stage in terms of detail and semantics. Subsequently, we designed a flat-bottom double-branch network (DFBU-Net) based on the U-Net architecture. The high-resolution flat bottom branch of this network maintained a 1/4 feature map size to ensure the preservation of rich detail information, while the low-resolution branch underwent progressive downsampling to capture more semantic information. To prevent information loss, cross-fusion was performed at each stage of the model's two branches. Finally, DFBU-Net was evaluated on the MICCAI FLARE2021 dataset (DSC:93.61%, NSD:85.01%). Particularly, in the challenging task of pancreatic segmentation, our model outperformed the first-place model by 0.72% in DSC and 2.92% in NSD. Furthermore, in the MICCAI PARSE2022 competition, DFBU-Net ranked ninth with a DICE score of 79.28%, demonstrating its excellent segmentation performance and generalization ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岳先生完成签到 ,获得积分10
1秒前
2秒前
安详忆梅发布了新的文献求助10
3秒前
优美紫槐应助天雨流芳采纳,获得10
3秒前
刘蕊完成签到,获得积分10
3秒前
4秒前
科研通AI6.1应助田田采纳,获得10
5秒前
科研通AI2S应助美丽的如彤采纳,获得10
5秒前
111发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
nnn完成签到,获得积分10
7秒前
lignin完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
明理K完成签到,获得积分10
8秒前
科研通AI6.1应助张张采纳,获得10
9秒前
zhuzhu完成签到,获得积分20
10秒前
10秒前
yyf发布了新的文献求助10
10秒前
10秒前
11秒前
小马甲应助琪琪采纳,获得10
12秒前
萝卜猪发布了新的文献求助30
12秒前
12秒前
L同学发布了新的文献求助10
13秒前
一颗土豆发布了新的文献求助10
13秒前
14秒前
han完成签到 ,获得积分10
14秒前
科研通AI6.1应助下花雨采纳,获得10
15秒前
15秒前
15秒前
AmyDong发布了新的文献求助10
15秒前
丘比特应助bunny采纳,获得10
16秒前
舒心盼曼发布了新的文献求助30
16秒前
浩二发布了新的文献求助10
16秒前
Akim应助111采纳,获得10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743404
求助须知:如何正确求助?哪些是违规求助? 5413822
关于积分的说明 15347458
捐赠科研通 4884191
什么是DOI,文献DOI怎么找? 2625636
邀请新用户注册赠送积分活动 1574492
关于科研通互助平台的介绍 1531400