DFBU-Net: Double-branch flat bottom U-Net for efficient medical image segmentation

计算机科学 分割 人工智能 增采样 正确性 瓶颈 深度学习 模式识别(心理学) 图像(数学) 计算机视觉 算法 嵌入式系统
作者
Hao Yin,Yi Wang,Jing Wen,Guangxian Wang,Bo Lin,Weibin Yang,Jian Ruan,Yi Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:90: 105818-105818 被引量:7
标识
DOI:10.1016/j.bspc.2023.105818
摘要

In the field of medical image processing, segmenting tissues and organs in CT/MRI and other medical sequence images is a vital yet challenging task. Analyzing the MICCAI competition, we have identified two problems in current methods for medical image organ segmentation: (1) There is a bottleneck in organ segmentation, with marginal room for improvement, as algorithmic capabilities have already surpassed the task's inherent difficulty. (2) Most current research focuses on stacking and enhancing new modules for segmentation while overlooking the inherent characteristics of medical sequence images. To overcome these two problems, firstly, we have encapsulated the three characteristics of CT/MRI medical sequence image segmentation: semantic correctness, edge accuracy, and 3D structure. Secondly, we delved into the most information-rich downsampling stage in terms of detail and semantics. Subsequently, we designed a flat-bottom double-branch network (DFBU-Net) based on the U-Net architecture. The high-resolution flat bottom branch of this network maintained a 1/4 feature map size to ensure the preservation of rich detail information, while the low-resolution branch underwent progressive downsampling to capture more semantic information. To prevent information loss, cross-fusion was performed at each stage of the model's two branches. Finally, DFBU-Net was evaluated on the MICCAI FLARE2021 dataset (DSC:93.61%, NSD:85.01%). Particularly, in the challenging task of pancreatic segmentation, our model outperformed the first-place model by 0.72% in DSC and 2.92% in NSD. Furthermore, in the MICCAI PARSE2022 competition, DFBU-Net ranked ninth with a DICE score of 79.28%, demonstrating its excellent segmentation performance and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cecilia完成签到,获得积分10
1秒前
壮壮发布了新的文献求助10
1秒前
Owen应助默默戎采纳,获得10
1秒前
1秒前
学术小菜鸟完成签到,获得积分10
1秒前
韩谷子完成签到 ,获得积分10
1秒前
2秒前
Re0pen发布了新的文献求助10
2秒前
王梓磬完成签到,获得积分10
3秒前
3秒前
852应助Mona采纳,获得10
3秒前
3秒前
wanci应助刘能采纳,获得10
3秒前
4秒前
科研通AI6应助kyfg采纳,获得10
4秒前
shanshan__完成签到,获得积分10
4秒前
生动的沧海完成签到,获得积分10
4秒前
田様应助coups哒嘟采纳,获得10
4秒前
小二郎应助Mody采纳,获得10
4秒前
5秒前
5秒前
酷波er应助漂亮的千万采纳,获得10
5秒前
wjy完成签到 ,获得积分10
5秒前
6秒前
coooos发布了新的文献求助20
6秒前
星野完成签到 ,获得积分10
6秒前
宿雨完成签到,获得积分10
7秒前
7秒前
8秒前
ccm应助lulu采纳,获得10
8秒前
脑洞疼应助难过的元容采纳,获得10
8秒前
隐形曼青应助KARRY采纳,获得10
8秒前
小猴子应助一个小水滴采纳,获得50
8秒前
尕辉发布了新的文献求助10
9秒前
9秒前
浮游应助拼搏的笑采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
独特的谷雪完成签到,获得积分10
10秒前
李健应助沉默黑猫采纳,获得10
10秒前
慧海拾穗发布了新的文献求助30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477701
求助须知:如何正确求助?哪些是违规求助? 4579485
关于积分的说明 14369133
捐赠科研通 4507697
什么是DOI,文献DOI怎么找? 2470120
邀请新用户注册赠送积分活动 1457068
关于科研通互助平台的介绍 1431055