DFBU-Net: Double-branch flat bottom U-Net for efficient medical image segmentation

计算机科学 分割 人工智能 增采样 正确性 瓶颈 深度学习 模式识别(心理学) 图像(数学) 计算机视觉 算法 嵌入式系统
作者
Hao Yin,Yi Wang,Jing Wen,Guangxian Wang,Bo Lin,Weibin Yang,Jian Ruan,Yi Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:90: 105818-105818 被引量:7
标识
DOI:10.1016/j.bspc.2023.105818
摘要

In the field of medical image processing, segmenting tissues and organs in CT/MRI and other medical sequence images is a vital yet challenging task. Analyzing the MICCAI competition, we have identified two problems in current methods for medical image organ segmentation: (1) There is a bottleneck in organ segmentation, with marginal room for improvement, as algorithmic capabilities have already surpassed the task's inherent difficulty. (2) Most current research focuses on stacking and enhancing new modules for segmentation while overlooking the inherent characteristics of medical sequence images. To overcome these two problems, firstly, we have encapsulated the three characteristics of CT/MRI medical sequence image segmentation: semantic correctness, edge accuracy, and 3D structure. Secondly, we delved into the most information-rich downsampling stage in terms of detail and semantics. Subsequently, we designed a flat-bottom double-branch network (DFBU-Net) based on the U-Net architecture. The high-resolution flat bottom branch of this network maintained a 1/4 feature map size to ensure the preservation of rich detail information, while the low-resolution branch underwent progressive downsampling to capture more semantic information. To prevent information loss, cross-fusion was performed at each stage of the model's two branches. Finally, DFBU-Net was evaluated on the MICCAI FLARE2021 dataset (DSC:93.61%, NSD:85.01%). Particularly, in the challenging task of pancreatic segmentation, our model outperformed the first-place model by 0.72% in DSC and 2.92% in NSD. Furthermore, in the MICCAI PARSE2022 competition, DFBU-Net ranked ninth with a DICE score of 79.28%, demonstrating its excellent segmentation performance and generalization ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助流星雨采纳,获得10
1秒前
xliiii发布了新的文献求助10
1秒前
077777完成签到,获得积分10
2秒前
chengguan完成签到,获得积分10
2秒前
浮游应助xh采纳,获得10
2秒前
2秒前
霍健霏完成签到,获得积分10
2秒前
浮游应助2203010221采纳,获得10
3秒前
蘑菇完成签到,获得积分10
3秒前
霍健霏发布了新的文献求助10
5秒前
cssfsa完成签到,获得积分10
5秒前
小二郎应助阿腾采纳,获得10
5秒前
5秒前
6秒前
骂我便秘完成签到,获得积分10
8秒前
乌冬面发布了新的文献求助10
8秒前
9秒前
勤恳万宝路完成签到,获得积分10
9秒前
阿腾发布了新的文献求助10
9秒前
猪猪hero发布了新的文献求助10
11秒前
12秒前
郑板桥完成签到,获得积分10
13秒前
14秒前
李大锤完成签到,获得积分10
16秒前
可爱的函函应助金不换采纳,获得10
17秒前
18秒前
19秒前
桐桐应助李小明采纳,获得30
19秒前
2024dsb完成签到 ,获得积分10
19秒前
流星雨发布了新的文献求助10
19秒前
zhenxing完成签到,获得积分10
19秒前
顾矜应助文光采纳,获得10
20秒前
20秒前
Troye完成签到,获得积分10
20秒前
21秒前
mary发布了新的文献求助10
21秒前
miaoquan完成签到,获得积分10
22秒前
星辰大海应助追寻依波采纳,获得10
23秒前
高亦凡完成签到 ,获得积分10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540269
求助须知:如何正确求助?哪些是违规求助? 4626796
关于积分的说明 14601195
捐赠科研通 4567835
什么是DOI,文献DOI怎么找? 2504244
邀请新用户注册赠送积分活动 1481913
关于科研通互助平台的介绍 1453562