DFBU-Net: Double-branch flat bottom U-Net for efficient medical image segmentation

计算机科学 分割 人工智能 增采样 正确性 瓶颈 深度学习 模式识别(心理学) 图像(数学) 计算机视觉 算法 嵌入式系统
作者
Hao Yin,Yi Wang,Jing Wen,Guangxian Wang,Bo Lin,Weibin Yang,Jian Ruan,Yi Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:90: 105818-105818 被引量:7
标识
DOI:10.1016/j.bspc.2023.105818
摘要

In the field of medical image processing, segmenting tissues and organs in CT/MRI and other medical sequence images is a vital yet challenging task. Analyzing the MICCAI competition, we have identified two problems in current methods for medical image organ segmentation: (1) There is a bottleneck in organ segmentation, with marginal room for improvement, as algorithmic capabilities have already surpassed the task's inherent difficulty. (2) Most current research focuses on stacking and enhancing new modules for segmentation while overlooking the inherent characteristics of medical sequence images. To overcome these two problems, firstly, we have encapsulated the three characteristics of CT/MRI medical sequence image segmentation: semantic correctness, edge accuracy, and 3D structure. Secondly, we delved into the most information-rich downsampling stage in terms of detail and semantics. Subsequently, we designed a flat-bottom double-branch network (DFBU-Net) based on the U-Net architecture. The high-resolution flat bottom branch of this network maintained a 1/4 feature map size to ensure the preservation of rich detail information, while the low-resolution branch underwent progressive downsampling to capture more semantic information. To prevent information loss, cross-fusion was performed at each stage of the model's two branches. Finally, DFBU-Net was evaluated on the MICCAI FLARE2021 dataset (DSC:93.61%, NSD:85.01%). Particularly, in the challenging task of pancreatic segmentation, our model outperformed the first-place model by 0.72% in DSC and 2.92% in NSD. Furthermore, in the MICCAI PARSE2022 competition, DFBU-Net ranked ninth with a DICE score of 79.28%, demonstrating its excellent segmentation performance and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻元菱发布了新的文献求助10
刚刚
郑雯予发布了新的文献求助10
刚刚
等风等你完成签到,获得积分10
1秒前
简单向露完成签到,获得积分10
1秒前
1秒前
儒雅的平安关注了科研通微信公众号
1秒前
暴躁的元灵完成签到,获得积分10
1秒前
0℃发布了新的文献求助10
2秒前
科研通AI2S应助小谢采纳,获得30
2秒前
穆柏杨完成签到,获得积分10
2秒前
zzz发布了新的文献求助10
2秒前
小兔叽完成签到,获得积分10
2秒前
轻松博超发布了新的文献求助10
2秒前
3秒前
干饭啦完成签到,获得积分10
3秒前
3秒前
哒布6完成签到 ,获得积分10
3秒前
3秒前
向上的小v完成签到 ,获得积分10
3秒前
fhkq完成签到,获得积分10
3秒前
微凉完成签到,获得积分10
4秒前
4秒前
一心难求完成签到,获得积分10
4秒前
4秒前
chelsey完成签到,获得积分10
4秒前
Orange应助爱撒娇的子默采纳,获得10
4秒前
西木完成签到,获得积分10
4秒前
tefuir0707完成签到,获得积分10
4秒前
CTtoF完成签到,获得积分10
5秒前
sumee完成签到,获得积分10
5秒前
5秒前
1b发布了新的文献求助10
6秒前
SciGPT应助zhuxiaonian采纳,获得10
6秒前
雪流星完成签到,获得积分10
6秒前
yao发布了新的文献求助10
6秒前
希望天下0贩的0应助0℃采纳,获得10
6秒前
Cy完成签到,获得积分10
7秒前
innyjiang完成签到,获得积分10
7秒前
7秒前
小马甲应助22222采纳,获得30
7秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5348298
求助须知:如何正确求助?哪些是违规求助? 4482432
关于积分的说明 13950813
捐赠科研通 4381161
什么是DOI,文献DOI怎么找? 2407200
邀请新用户注册赠送积分活动 1399822
关于科研通互助平台的介绍 1373090