DFBU-Net: Double-branch flat bottom U-Net for efficient medical image segmentation

计算机科学 分割 人工智能 增采样 正确性 瓶颈 深度学习 模式识别(心理学) 图像(数学) 计算机视觉 算法 嵌入式系统
作者
Hao Yin,Yi Wang,Jing Wen,Guangxian Wang,Bo Lin,Weibin Yang,Jian Ruan,Yi Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:90: 105818-105818 被引量:7
标识
DOI:10.1016/j.bspc.2023.105818
摘要

In the field of medical image processing, segmenting tissues and organs in CT/MRI and other medical sequence images is a vital yet challenging task. Analyzing the MICCAI competition, we have identified two problems in current methods for medical image organ segmentation: (1) There is a bottleneck in organ segmentation, with marginal room for improvement, as algorithmic capabilities have already surpassed the task's inherent difficulty. (2) Most current research focuses on stacking and enhancing new modules for segmentation while overlooking the inherent characteristics of medical sequence images. To overcome these two problems, firstly, we have encapsulated the three characteristics of CT/MRI medical sequence image segmentation: semantic correctness, edge accuracy, and 3D structure. Secondly, we delved into the most information-rich downsampling stage in terms of detail and semantics. Subsequently, we designed a flat-bottom double-branch network (DFBU-Net) based on the U-Net architecture. The high-resolution flat bottom branch of this network maintained a 1/4 feature map size to ensure the preservation of rich detail information, while the low-resolution branch underwent progressive downsampling to capture more semantic information. To prevent information loss, cross-fusion was performed at each stage of the model's two branches. Finally, DFBU-Net was evaluated on the MICCAI FLARE2021 dataset (DSC:93.61%, NSD:85.01%). Particularly, in the challenging task of pancreatic segmentation, our model outperformed the first-place model by 0.72% in DSC and 2.92% in NSD. Furthermore, in the MICCAI PARSE2022 competition, DFBU-Net ranked ninth with a DICE score of 79.28%, demonstrating its excellent segmentation performance and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡机了完成签到,获得积分10
刚刚
刘笑完成签到 ,获得积分10
1秒前
百尺竿头完成签到,获得积分10
2秒前
陈倩完成签到,获得积分10
2秒前
迷你的雁枫完成签到 ,获得积分10
2秒前
鲜于冰彤完成签到,获得积分10
3秒前
SciGPT应助隐形的寄云采纳,获得10
3秒前
4秒前
鱼片完成签到,获得积分20
5秒前
搜集达人应助房产中介采纳,获得10
7秒前
想毕业的猫猫完成签到,获得积分10
8秒前
8秒前
10秒前
10秒前
鱼蛋发布了新的文献求助10
10秒前
Silence完成签到 ,获得积分10
12秒前
正己化人应助白华苍松采纳,获得20
12秒前
数学真的好难完成签到 ,获得积分10
13秒前
辞清完成签到 ,获得积分10
13秒前
云禾完成签到,获得积分10
14秒前
Van完成签到 ,获得积分10
15秒前
15秒前
yao完成签到,获得积分10
16秒前
Jun2025完成签到,获得积分10
16秒前
科研通AI2S应助wangrswjx采纳,获得10
17秒前
追寻如雪发布了新的文献求助10
17秒前
陈肖楠完成签到,获得积分10
18秒前
一个柔弱的读书人完成签到 ,获得积分10
18秒前
正己化人应助隐形的寄云采纳,获得10
19秒前
诺奇完成签到,获得积分10
20秒前
20秒前
房产中介发布了新的文献求助10
20秒前
21秒前
21秒前
AHMZI完成签到,获得积分10
21秒前
22秒前
烤鱼片完成签到 ,获得积分10
23秒前
胡萝卜发布了新的文献求助10
25秒前
YiqingGu发布了新的文献求助10
25秒前
陈陈陈完成签到 ,获得积分10
25秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378793
求助须知:如何正确求助?哪些是违规求助? 4503229
关于积分的说明 14015370
捐赠科研通 4411933
什么是DOI,文献DOI怎么找? 2423548
邀请新用户注册赠送积分活动 1416499
关于科研通互助平台的介绍 1393963