DFBU-Net: Double-branch flat bottom U-Net for efficient medical image segmentation

计算机科学 分割 人工智能 增采样 正确性 瓶颈 深度学习 模式识别(心理学) 图像(数学) 计算机视觉 算法 嵌入式系统
作者
Hao Yin,Yi Wang,Jing Wen,Guangxian Wang,Bo Lin,Weibin Yang,Jian Ruan,Yi Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:90: 105818-105818 被引量:7
标识
DOI:10.1016/j.bspc.2023.105818
摘要

In the field of medical image processing, segmenting tissues and organs in CT/MRI and other medical sequence images is a vital yet challenging task. Analyzing the MICCAI competition, we have identified two problems in current methods for medical image organ segmentation: (1) There is a bottleneck in organ segmentation, with marginal room for improvement, as algorithmic capabilities have already surpassed the task's inherent difficulty. (2) Most current research focuses on stacking and enhancing new modules for segmentation while overlooking the inherent characteristics of medical sequence images. To overcome these two problems, firstly, we have encapsulated the three characteristics of CT/MRI medical sequence image segmentation: semantic correctness, edge accuracy, and 3D structure. Secondly, we delved into the most information-rich downsampling stage in terms of detail and semantics. Subsequently, we designed a flat-bottom double-branch network (DFBU-Net) based on the U-Net architecture. The high-resolution flat bottom branch of this network maintained a 1/4 feature map size to ensure the preservation of rich detail information, while the low-resolution branch underwent progressive downsampling to capture more semantic information. To prevent information loss, cross-fusion was performed at each stage of the model's two branches. Finally, DFBU-Net was evaluated on the MICCAI FLARE2021 dataset (DSC:93.61%, NSD:85.01%). Particularly, in the challenging task of pancreatic segmentation, our model outperformed the first-place model by 0.72% in DSC and 2.92% in NSD. Furthermore, in the MICCAI PARSE2022 competition, DFBU-Net ranked ninth with a DICE score of 79.28%, demonstrating its excellent segmentation performance and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111发布了新的文献求助10
1秒前
田様应助1111111111111采纳,获得10
1秒前
Echo完成签到,获得积分10
2秒前
两颗星发布了新的文献求助10
2秒前
SciGPT应助12w采纳,获得10
3秒前
Jeri完成签到 ,获得积分10
4秒前
prion完成签到,获得积分10
4秒前
121发布了新的文献求助20
4秒前
张张发布了新的文献求助30
4秒前
Anjianfubai完成签到,获得积分10
5秒前
执着的灵阳完成签到,获得积分10
5秒前
默listening发布了新的文献求助10
5秒前
阿钰发布了新的文献求助10
5秒前
sp完成签到,获得积分10
5秒前
24816848发布了新的文献求助10
6秒前
Crazyer完成签到,获得积分10
6秒前
6秒前
科研通AI2S应助靓丽安珊采纳,获得10
7秒前
8秒前
矫仁瑞发布了新的文献求助10
8秒前
Weilang发布了新的文献求助30
8秒前
余卓奇完成签到,获得积分10
8秒前
大大怪完成签到,获得积分10
9秒前
在水一方应助Change_Jing采纳,获得10
9秒前
大白不白完成签到,获得积分10
9秒前
121完成签到,获得积分10
9秒前
Able驳回了SciGPT应助
10秒前
liaodongjun发布了新的文献求助200
10秒前
10秒前
10秒前
郭德久完成签到 ,获得积分10
11秒前
11秒前
空山新雨发布了新的文献求助10
11秒前
橙子完成签到,获得积分10
11秒前
i十七发布了新的文献求助30
11秒前
坚强幼晴发布了新的文献求助10
11秒前
FashionBoy应助LLL采纳,获得10
11秒前
陶醉大侠完成签到,获得积分10
11秒前
11秒前
issl完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635