DFBU-Net: Double-branch flat bottom U-Net for efficient medical image segmentation

计算机科学 分割 人工智能 增采样 正确性 瓶颈 深度学习 模式识别(心理学) 图像(数学) 计算机视觉 算法 嵌入式系统
作者
Hao Yin,Yi Wang,Jing Wen,Guangxian Wang,Bo Lin,Weibin Yang,Jian Ruan,Yi Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:90: 105818-105818 被引量:7
标识
DOI:10.1016/j.bspc.2023.105818
摘要

In the field of medical image processing, segmenting tissues and organs in CT/MRI and other medical sequence images is a vital yet challenging task. Analyzing the MICCAI competition, we have identified two problems in current methods for medical image organ segmentation: (1) There is a bottleneck in organ segmentation, with marginal room for improvement, as algorithmic capabilities have already surpassed the task's inherent difficulty. (2) Most current research focuses on stacking and enhancing new modules for segmentation while overlooking the inherent characteristics of medical sequence images. To overcome these two problems, firstly, we have encapsulated the three characteristics of CT/MRI medical sequence image segmentation: semantic correctness, edge accuracy, and 3D structure. Secondly, we delved into the most information-rich downsampling stage in terms of detail and semantics. Subsequently, we designed a flat-bottom double-branch network (DFBU-Net) based on the U-Net architecture. The high-resolution flat bottom branch of this network maintained a 1/4 feature map size to ensure the preservation of rich detail information, while the low-resolution branch underwent progressive downsampling to capture more semantic information. To prevent information loss, cross-fusion was performed at each stage of the model's two branches. Finally, DFBU-Net was evaluated on the MICCAI FLARE2021 dataset (DSC:93.61%, NSD:85.01%). Particularly, in the challenging task of pancreatic segmentation, our model outperformed the first-place model by 0.72% in DSC and 2.92% in NSD. Furthermore, in the MICCAI PARSE2022 competition, DFBU-Net ranked ninth with a DICE score of 79.28%, demonstrating its excellent segmentation performance and generalization ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助粥mi采纳,获得10
1秒前
天天完成签到 ,获得积分10
2秒前
XIEQ完成签到,获得积分10
3秒前
酷波er应助Yuchaoo采纳,获得10
3秒前
微微发布了新的文献求助20
3秒前
老衲发布了新的文献求助10
3秒前
phil发布了新的文献求助10
3秒前
七七完成签到,获得积分10
4秒前
体贴怜翠发布了新的文献求助10
4秒前
小白应助XIEQ采纳,获得10
6秒前
7秒前
10秒前
woobinhua完成签到,获得积分10
10秒前
今后应助brianzk1989采纳,获得10
10秒前
vv发布了新的文献求助10
11秒前
12秒前
12秒前
14秒前
沙砾完成签到,获得积分10
14秒前
MA发布了新的文献求助10
15秒前
15秒前
孤独绮梅完成签到 ,获得积分10
16秒前
17秒前
小白应助XIEQ采纳,获得10
17秒前
猪猪hero应助含辰惜采纳,获得10
17秒前
17秒前
12发布了新的文献求助10
18秒前
无极微光应助1454727550采纳,获得20
18秒前
jinzhen发布了新的文献求助10
18秒前
19秒前
猪小猪发布了新的文献求助10
19秒前
19秒前
19秒前
番番完成签到,获得积分10
19秒前
19秒前
20秒前
优美紫槐发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
22秒前
猪四郎完成签到,获得积分10
23秒前
甘小平关注了科研通微信公众号
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605657
求助须知:如何正确求助?哪些是违规求助? 4690241
关于积分的说明 14862785
捐赠科研通 4702214
什么是DOI,文献DOI怎么找? 2542212
邀请新用户注册赠送积分活动 1507831
关于科研通互助平台的介绍 1472132