亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DFBU-Net: Double-branch flat bottom U-Net for efficient medical image segmentation

计算机科学 分割 人工智能 增采样 正确性 瓶颈 深度学习 模式识别(心理学) 图像(数学) 计算机视觉 算法 嵌入式系统
作者
Hao Yin,Yi Wang,Jing Wen,Guangxian Wang,Bo Lin,Weibin Yang,Jian Ruan,Yi Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:90: 105818-105818 被引量:7
标识
DOI:10.1016/j.bspc.2023.105818
摘要

In the field of medical image processing, segmenting tissues and organs in CT/MRI and other medical sequence images is a vital yet challenging task. Analyzing the MICCAI competition, we have identified two problems in current methods for medical image organ segmentation: (1) There is a bottleneck in organ segmentation, with marginal room for improvement, as algorithmic capabilities have already surpassed the task's inherent difficulty. (2) Most current research focuses on stacking and enhancing new modules for segmentation while overlooking the inherent characteristics of medical sequence images. To overcome these two problems, firstly, we have encapsulated the three characteristics of CT/MRI medical sequence image segmentation: semantic correctness, edge accuracy, and 3D structure. Secondly, we delved into the most information-rich downsampling stage in terms of detail and semantics. Subsequently, we designed a flat-bottom double-branch network (DFBU-Net) based on the U-Net architecture. The high-resolution flat bottom branch of this network maintained a 1/4 feature map size to ensure the preservation of rich detail information, while the low-resolution branch underwent progressive downsampling to capture more semantic information. To prevent information loss, cross-fusion was performed at each stage of the model's two branches. Finally, DFBU-Net was evaluated on the MICCAI FLARE2021 dataset (DSC:93.61%, NSD:85.01%). Particularly, in the challenging task of pancreatic segmentation, our model outperformed the first-place model by 0.72% in DSC and 2.92% in NSD. Furthermore, in the MICCAI PARSE2022 competition, DFBU-Net ranked ninth with a DICE score of 79.28%, demonstrating its excellent segmentation performance and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗的雁完成签到,获得积分10
2秒前
11秒前
小蘑菇应助王绪威采纳,获得10
22秒前
27秒前
leeSongha完成签到 ,获得积分10
37秒前
哈哈完成签到 ,获得积分10
44秒前
45秒前
Nick_YFWS完成签到,获得积分10
49秒前
闲鱼医生发布了新的文献求助10
54秒前
领导范儿应助lvsehx采纳,获得10
55秒前
1分钟前
1分钟前
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
从容芮应助科研通管家采纳,获得30
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
1分钟前
从容芮应助科研通管家采纳,获得200
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
研友_VZG7GZ应助舒服的西装采纳,获得30
1分钟前
1分钟前
1分钟前
科研01完成签到,获得积分10
1分钟前
1分钟前
lvsehx发布了新的文献求助10
1分钟前
劉浏琉完成签到,获得积分10
1分钟前
1分钟前
lvsehx完成签到,获得积分10
1分钟前
1分钟前
cds发布了新的文献求助10
1分钟前
烟花应助cds采纳,获得10
2分钟前
2分钟前
樊樊樊发布了新的文献求助30
2分钟前
CipherSage应助小冯看不懂采纳,获得10
2分钟前
Ava应助独特靖采纳,获得10
2分钟前
2分钟前
2分钟前
是你的雨发布了新的文献求助10
2分钟前
2分钟前
樊樊樊完成签到,获得积分20
2分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126877
求助须知:如何正确求助?哪些是违规求助? 4330184
关于积分的说明 13492960
捐赠科研通 4165531
什么是DOI,文献DOI怎么找? 2283452
邀请新用户注册赠送积分活动 1284485
关于科研通互助平台的介绍 1224297