DFBU-Net: Double-branch flat bottom U-Net for efficient medical image segmentation

计算机科学 分割 人工智能 增采样 正确性 瓶颈 深度学习 模式识别(心理学) 图像(数学) 计算机视觉 算法 嵌入式系统
作者
Hao Yin,Yi Wang,Jing Wen,Guangxian Wang,Bo Lin,Weibin Yang,Jian Ruan,Yi Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:90: 105818-105818 被引量:7
标识
DOI:10.1016/j.bspc.2023.105818
摘要

In the field of medical image processing, segmenting tissues and organs in CT/MRI and other medical sequence images is a vital yet challenging task. Analyzing the MICCAI competition, we have identified two problems in current methods for medical image organ segmentation: (1) There is a bottleneck in organ segmentation, with marginal room for improvement, as algorithmic capabilities have already surpassed the task's inherent difficulty. (2) Most current research focuses on stacking and enhancing new modules for segmentation while overlooking the inherent characteristics of medical sequence images. To overcome these two problems, firstly, we have encapsulated the three characteristics of CT/MRI medical sequence image segmentation: semantic correctness, edge accuracy, and 3D structure. Secondly, we delved into the most information-rich downsampling stage in terms of detail and semantics. Subsequently, we designed a flat-bottom double-branch network (DFBU-Net) based on the U-Net architecture. The high-resolution flat bottom branch of this network maintained a 1/4 feature map size to ensure the preservation of rich detail information, while the low-resolution branch underwent progressive downsampling to capture more semantic information. To prevent information loss, cross-fusion was performed at each stage of the model's two branches. Finally, DFBU-Net was evaluated on the MICCAI FLARE2021 dataset (DSC:93.61%, NSD:85.01%). Particularly, in the challenging task of pancreatic segmentation, our model outperformed the first-place model by 0.72% in DSC and 2.92% in NSD. Furthermore, in the MICCAI PARSE2022 competition, DFBU-Net ranked ninth with a DICE score of 79.28%, demonstrating its excellent segmentation performance and generalization ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
再次追逐夏天完成签到,获得积分10
1秒前
潘小蓝发布了新的文献求助10
1秒前
1秒前
2秒前
大个应助zwx采纳,获得10
2秒前
自信向梦发布了新的文献求助10
2秒前
充电宝应助着急的乌冬面采纳,获得10
2秒前
3秒前
沈才佳完成签到,获得积分10
3秒前
Hot发布了新的文献求助10
3秒前
3秒前
4秒前
领导范儿应助smin采纳,获得10
4秒前
baolong发布了新的文献求助10
4秒前
英俊的铭应助ZhaoCun采纳,获得10
4秒前
Jasper应助ZhaoCun采纳,获得10
4秒前
bkagyin应助ZhaoCun采纳,获得10
4秒前
科目三应助ZhaoCun采纳,获得10
4秒前
一地狗粮完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
dd完成签到,获得积分10
6秒前
情怀应助学术小子采纳,获得10
7秒前
妙木仙发布了新的文献求助10
7秒前
7秒前
里予完成签到,获得积分10
7秒前
7秒前
8秒前
lve发布了新的文献求助10
8秒前
健忘之卉完成签到,获得积分10
8秒前
可爱的函函应助努力学习采纳,获得10
8秒前
米特拉斯完成签到,获得积分10
8秒前
酷波er应助Little2采纳,获得10
8秒前
9秒前
肖琳发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512432
求助须知:如何正确求助?哪些是违规求助? 4606873
关于积分的说明 14501499
捐赠科研通 4542174
什么是DOI,文献DOI怎么找? 2488952
邀请新用户注册赠送积分活动 1470999
关于科研通互助平台的介绍 1443152