亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physics-Guided Multi-Agent Deep Reinforcement Learning for Robust Active Voltage Control in Electrical Distribution Systems

强化学习 光伏系统 电压 计算机科学 控制理论(社会学) 节点(物理) 控制(管理) 电子工程 工程类 人工智能 电气工程 结构工程
作者
Pengcheng Chen,Shichao Liu,Xiaozhe Wang,Innocent Kamwa
出处
期刊:IEEE Transactions on Circuits and Systems I-regular Papers [Institute of Electrical and Electronics Engineers]
卷期号:71 (2): 922-933 被引量:4
标识
DOI:10.1109/tcsi.2023.3340691
摘要

Although several multi-agent deep reinforcement learning (MADRL) algorithms have been employed in power distribution networks configured with high penetration level of Photovoltaic (PV) generators for active voltage control (AVC), the impact of the voltage fluctuation of a single PV node on voltage violations of other PV nodes in the network is ignored. Consequently, it leads to the conservativeness of the existing MADRL based AVC algorithms. In this paper, a robust MADRL control algorithm is designed to minimize the nodal voltage violation and line loss with the exploration of coupling voltage fluctuations across all the controlled nodes by coordinating PV inverters, and a physics factor is utilized to guide (physics-guided) the training policy with the expectation of a better performance compared to existing purely data-driven methods. In the proposed physics-guided multi-agent adversarial twin delayed deep deterministic (PG-MA2TD3) policy gradient algorithm, a physics factor, global sensitivity of voltage (GSV), is properly embedded in the algorithm to measure the influence of the nodal voltage fluctuation on voltage violations on the other controlled nodes with PV inverters and this GSV is shared in the learning center to guide the centralized learning and decentralized execution process. The multi-agent adversarial learning (MAAL) embedded with the GSV to seek an adaptive descend gradient for reducing the Q-value function appropriately rather than always assuming the worst case. Therefore, this physics-guided method can reduce the conservation and provide significantly better reward. Finally, the proposed algorithm is compared with several other methods on IEEE 33-bus, 141-bus and 322-bus with three-year data in Portuguese and the results indicate the proposed method can obtain the minimal voltage fluctuation and the best reward in the comparisons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
krajicek完成签到,获得积分10
13秒前
15秒前
hgl完成签到,获得积分10
24秒前
34秒前
搜集达人应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
closer发布了新的文献求助10
2分钟前
张泽崇发布了新的文献求助10
2分钟前
3分钟前
自己发布了新的文献求助10
3分钟前
3分钟前
closer发布了新的文献求助10
3分钟前
传奇3应助自己采纳,获得10
3分钟前
closer完成签到,获得积分10
3分钟前
某某某完成签到,获得积分10
3分钟前
自己完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
lovelife发布了新的文献求助10
4分钟前
4分钟前
聪明的云完成签到 ,获得积分10
5分钟前
阿泽完成签到 ,获得积分10
5分钟前
5分钟前
张泽崇发布了新的文献求助10
5分钟前
1206425219密完成签到,获得积分10
5分钟前
6分钟前
共享精神应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
NexusExplorer应助科研通管家采纳,获得10
7分钟前
7分钟前
Aliothae完成签到,获得积分20
7分钟前
科研通AI5应助929采纳,获得10
7分钟前
HLT完成签到 ,获得积分10
7分钟前
7分钟前
小秋发布了新的文献求助10
7分钟前
CC完成签到,获得积分0
7分钟前
7分钟前
7分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965717
求助须知:如何正确求助?哪些是违规求助? 3510950
关于积分的说明 11155686
捐赠科研通 3245413
什么是DOI,文献DOI怎么找? 1792876
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804216