Physics-Guided Multi-Agent Deep Reinforcement Learning for Robust Active Voltage Control in Electrical Distribution Systems

强化学习 光伏系统 电压 计算机科学 控制理论(社会学) 节点(物理) 控制(管理) 电子工程 工程类 人工智能 电气工程 结构工程
作者
Pengcheng Chen,Shichao Liu,Xiaozhe Wang,Innocent Kamwa
出处
期刊:IEEE Transactions on Circuits and Systems I-regular Papers [Institute of Electrical and Electronics Engineers]
卷期号:71 (2): 922-933 被引量:11
标识
DOI:10.1109/tcsi.2023.3340691
摘要

Although several multi-agent deep reinforcement learning (MADRL) algorithms have been employed in power distribution networks configured with high penetration level of Photovoltaic (PV) generators for active voltage control (AVC), the impact of the voltage fluctuation of a single PV node on voltage violations of other PV nodes in the network is ignored. Consequently, it leads to the conservativeness of the existing MADRL based AVC algorithms. In this paper, a robust MADRL control algorithm is designed to minimize the nodal voltage violation and line loss with the exploration of coupling voltage fluctuations across all the controlled nodes by coordinating PV inverters, and a physics factor is utilized to guide (physics-guided) the training policy with the expectation of a better performance compared to existing purely data-driven methods. In the proposed physics-guided multi-agent adversarial twin delayed deep deterministic (PG-MA2TD3) policy gradient algorithm, a physics factor, global sensitivity of voltage (GSV), is properly embedded in the algorithm to measure the influence of the nodal voltage fluctuation on voltage violations on the other controlled nodes with PV inverters and this GSV is shared in the learning center to guide the centralized learning and decentralized execution process. The multi-agent adversarial learning (MAAL) embedded with the GSV to seek an adaptive descend gradient for reducing the Q-value function appropriately rather than always assuming the worst case. Therefore, this physics-guided method can reduce the conservation and provide significantly better reward. Finally, the proposed algorithm is compared with several other methods on IEEE 33-bus, 141-bus and 322-bus with three-year data in Portuguese and the results indicate the proposed method can obtain the minimal voltage fluctuation and the best reward in the comparisons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1234完成签到,获得积分10
刚刚
leey发布了新的文献求助10
刚刚
马克完成签到,获得积分10
刚刚
1秒前
专注的问寒应助Aliquat_336采纳,获得100
1秒前
1秒前
忙里偷闲完成签到,获得积分10
2秒前
wen发布了新的文献求助10
2秒前
如意凌寒完成签到,获得积分10
2秒前
卡皮巴拉yuan应助张浮生采纳,获得10
2秒前
陈陈陈完成签到,获得积分10
3秒前
酷波er应助开心忆秋采纳,获得30
3秒前
3秒前
zqy发布了新的文献求助10
3秒前
Z666666666完成签到 ,获得积分10
3秒前
ddboys1009发布了新的文献求助10
3秒前
qqqq完成签到,获得积分10
4秒前
4秒前
4秒前
LIO发布了新的文献求助10
4秒前
cc完成签到,获得积分0
4秒前
5秒前
有魅力的超短裙完成签到,获得积分10
5秒前
英俊的铭应助顾年采纳,获得10
5秒前
5秒前
科研通AI6应助keke采纳,获得10
5秒前
慕青应助丧彪采纳,获得10
6秒前
香蕉觅云应助山岗落月采纳,获得10
6秒前
JADE完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
FashionBoy应助sansan采纳,获得10
7秒前
紫苏桃子姜完成签到,获得积分10
7秒前
慕雪发布了新的文献求助20
7秒前
啊德哈卡完成签到,获得积分10
8秒前
8秒前
挽风发布了新的文献求助10
8秒前
8秒前
9秒前
顾矜应助从容的悟空采纳,获得10
9秒前
HAMS发布了新的文献求助10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297