An S-scheme heterointerface-engineered high-performance ternary NiAl-LDH@TiO2/Ti3C2 MXene photocatalytic system for solar-powered CO2 reduction to produce energy-rich fuels

材料科学 三元运算 光催化 异质结 化学工程 MXenes公司 光电子学 纳米技术 催化作用 化学 计算机科学 生物化学 工程类 程序设计语言
作者
Dong‐Eun Lee,Devthade Vidyasagar,B. Moses Abraham,Wan‐Kuen Jo,Surendar Tonda
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:480: 148227-148227 被引量:13
标识
DOI:10.1016/j.cej.2023.148227
摘要

While there is much potential for photocatalytic CO2 reduction, poor light absorption and high recombination rates of photogenerated charges limit its effectiveness. To address these challenges, we systematically developed a heterointerface-engineered ternary hybrid photocatalyst comprising NiAl-layered double hydroxide (LDH), titanium dioxide (TiO2), and titanium carbide (Ti3C2) MXene via an in situ growth approach. As a result of the unique combination of these three components, the synthesized ternary NiAl-LDH@TiO2/Ti3C2 photocatalyst demonstrated broad light absorption spanning across the ultraviolet, visible, and near-infrared regions, as well as elevated CO2 adsorption capacity. In situ-irradiated X-ray photoelectron spectroscopy and electron paramagnetic resonance analyses provided compelling evidence for an unconventional S-scheme charge transfer mechanism in the ternary system that effectively separates the charges and suppresses recombination, allowing NiAl-LDH to maintain its strong reducing capacity and TiO2 to maintain its robust oxidizing capacity. Utilizing the complementary and synergistic properties of these three components (NiAl-LDH, TiO2, and Ti3C2), an optimized ternary NiAl-LDH@TiO2/Ti3C2 photocatalyst with 30 wt% Ti3C2 exhibited extraordinary solar-driven CO2 reduction performance with a remarkable 99 % CO selectivity against competitive H2 production and a high apparent quantum yield of 0.81 at 365 nm. Additionally, the ternary photocatalyst exhibited excellent stability, maintaining its performance capacity over multiple CO2 reduction cycles. This work provides a fresh perspective on designing and creating efficient ternary S-scheme photocatalytic systems for solar-driven CO2 reduction and highlights the potential for energy-rich fuel production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助Halo采纳,获得10
5秒前
彭于晏应助万刈采纳,获得10
7秒前
7秒前
GXY完成签到,获得积分10
11秒前
12秒前
科研小白发布了新的文献求助10
12秒前
曲终人散完成签到,获得积分10
14秒前
cd完成签到,获得积分10
15秒前
科研通AI2S应助XUST胖谢采纳,获得10
16秒前
16秒前
大个应助酷炫夏山采纳,获得10
17秒前
17秒前
lalala发布了新的文献求助10
18秒前
Ellen完成签到 ,获得积分10
19秒前
脑洞疼应助科研小白采纳,获得10
20秒前
可爱的函函应助Caffery采纳,获得10
21秒前
xiaodu20230228完成签到 ,获得积分10
22秒前
23秒前
鲤鱼完成签到,获得积分10
23秒前
离言完成签到,获得积分10
23秒前
科目三应助南风不竞采纳,获得10
23秒前
传奇3应助科研通管家采纳,获得10
24秒前
田様应助科研通管家采纳,获得10
24秒前
所所应助科研通管家采纳,获得10
24秒前
CipherSage应助科研通管家采纳,获得10
24秒前
慕青应助科研通管家采纳,获得10
24秒前
小二郎应助科研通管家采纳,获得10
24秒前
24秒前
GGGGD完成签到,获得积分10
30秒前
有魅力棉花糖完成签到,获得积分10
30秒前
脑洞疼应助Gravity采纳,获得50
31秒前
充电宝应助小雒雒采纳,获得10
31秒前
32秒前
33秒前
mirror完成签到,获得积分10
35秒前
35秒前
SciGPT应助黄毛虎采纳,获得10
35秒前
36秒前
庞扬完成签到,获得积分20
38秒前
削菠萝发布了新的文献求助10
38秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259819
求助须知:如何正确求助?哪些是违规求助? 2901303
关于积分的说明 8314986
捐赠科研通 2570798
什么是DOI,文献DOI怎么找? 1396675
科研通“疑难数据库(出版商)”最低求助积分说明 653554
邀请新用户注册赠送积分活动 631853