亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GSLCDA: An Unsupervised Deep Graph Structure Learning Method for Predicting CircRNA-Disease Association

计算机科学 图形 人工智能 无监督学习 深度学习 机器学习 理论计算机科学
作者
Lei Wang,Zhengwei Li,Zhu‐Hong You,Zhu‐Hong You,Leon Wong
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1742-1751 被引量:5
标识
DOI:10.1109/jbhi.2023.3344714
摘要

Growing studies reveal that Circular RNAs (circRNAs) are broadly engaged in physiological processes of cell proliferation, differentiation, aging, apoptosis, and are closely associated with the pathogenesis of numerous diseases. Clarification of the correlation among diseases and circRNAs is of great clinical importance to provide new therapeutic strategies for complex diseases. However, previous circRNA-disease association prediction methods rely excessively on the graph network, and the model performance is dramatically reduced when noisy connections occur in the graph structure. To address this problem, this paper proposes an unsupervised deep graph structure learning method GSLCDA to predict potential CDAs. Concretely, we first integrate circRNA and disease multi-source data to constitute the CDA heterogeneous network. Then the network topology is learned using the graph structure, and the original graph is enhanced in an unsupervised manner by maximize the inter information of the learned and original graphs to uncover their essential features. Finally, graph space sensitive k-nearest neighbor (KNN) algorithm is employed to search for latent CDAs. In the benchmark dataset, GSLCDA obtained 92.67% accuracy with 0.9279 AUC. GSLCDA also exhibits exceptional performance on independent datasets. Furthermore, 14, 12 and 14 of the top 16 circRNAs with the most points GSLCDA prediction scores were confirmed in the relevant literature in the breast cancer, colorectal cancer and lung cancer case studies, respectively. Such results demonstrated that GSLCDA can validly reveal underlying CDA and offer new perspectives for the diagnosis and therapy of complex human diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
清爽伯云发布了新的文献求助10
11秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
wanci应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
烟花应助科研通管家采纳,获得10
21秒前
gf完成签到 ,获得积分10
25秒前
山野有雾都完成签到,获得积分10
35秒前
45秒前
阳光发布了新的文献求助10
50秒前
52秒前
54秒前
范振杰发布了新的文献求助10
57秒前
sissie发布了新的文献求助10
57秒前
59秒前
酷波er应助sissie采纳,获得10
1分钟前
嘿嘿应助灵巧伊采纳,获得10
1分钟前
Lshyong完成签到 ,获得积分10
1分钟前
1分钟前
Wei发布了新的文献求助10
2分钟前
Allen0520完成签到,获得积分10
2分钟前
2分钟前
andrele应助科研通管家采纳,获得10
2分钟前
andrele应助科研通管家采纳,获得10
2分钟前
2分钟前
WXKennyS发布了新的文献求助10
2分钟前
Wei发布了新的文献求助10
3分钟前
范振杰完成签到,获得积分10
3分钟前
3分钟前
科目三应助杜鑫鹏采纳,获得10
3分钟前
level完成签到 ,获得积分10
3分钟前
Pinocchior发布了新的文献求助10
4分钟前
JamesPei应助Pinocchior采纳,获得10
4分钟前
4分钟前
andrele应助科研通管家采纳,获得10
4分钟前
andrele应助科研通管家采纳,获得10
4分钟前
andrele应助科研通管家采纳,获得10
4分钟前
Pinocchior完成签到,获得积分20
4分钟前
kbcbwb2002完成签到,获得积分10
4分钟前
哈宁发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357029
求助须知:如何正确求助?哪些是违规求助? 4488644
关于积分的说明 13972390
捐赠科研通 4389691
什么是DOI,文献DOI怎么找? 2411714
邀请新用户注册赠送积分活动 1404269
关于科研通互助平台的介绍 1378379