GSLCDA: An Unsupervised Deep Graph Structure Learning Method for Predicting CircRNA-Disease Association

计算机科学 图形 人工智能 无监督学习 深度学习 机器学习 理论计算机科学
作者
Lei Wang,Zhengwei Li,Zhu‐Hong You,Zhu‐Hong You,Leon Wong
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1742-1751 被引量:5
标识
DOI:10.1109/jbhi.2023.3344714
摘要

Growing studies reveal that Circular RNAs (circRNAs) are broadly engaged in physiological processes of cell proliferation, differentiation, aging, apoptosis, and are closely associated with the pathogenesis of numerous diseases. Clarification of the correlation among diseases and circRNAs is of great clinical importance to provide new therapeutic strategies for complex diseases. However, previous circRNA-disease association prediction methods rely excessively on the graph network, and the model performance is dramatically reduced when noisy connections occur in the graph structure. To address this problem, this paper proposes an unsupervised deep graph structure learning method GSLCDA to predict potential CDAs. Concretely, we first integrate circRNA and disease multi-source data to constitute the CDA heterogeneous network. Then the network topology is learned using the graph structure, and the original graph is enhanced in an unsupervised manner by maximize the inter information of the learned and original graphs to uncover their essential features. Finally, graph space sensitive k-nearest neighbor (KNN) algorithm is employed to search for latent CDAs. In the benchmark dataset, GSLCDA obtained 92.67% accuracy with 0.9279 AUC. GSLCDA also exhibits exceptional performance on independent datasets. Furthermore, 14, 12 and 14 of the top 16 circRNAs with the most points GSLCDA prediction scores were confirmed in the relevant literature in the breast cancer, colorectal cancer and lung cancer case studies, respectively. Such results demonstrated that GSLCDA can validly reveal underlying CDA and offer new perspectives for the diagnosis and therapy of complex human diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sss发布了新的文献求助10
刚刚
柠安完成签到,获得积分10
1秒前
夏目发布了新的文献求助10
1秒前
精灵发布了新的文献求助10
3秒前
李爱国应助苯基乙胺采纳,获得10
5秒前
CipherSage应助故意的怜晴采纳,获得10
6秒前
烟花应助灼灼朗朗采纳,获得10
7秒前
英俊的铭应助无舟采纳,获得10
8秒前
8秒前
虚幻赛凤完成签到,获得积分10
9秒前
9秒前
有为发布了新的文献求助10
10秒前
David完成签到,获得积分10
10秒前
12秒前
光亮笑柳完成签到,获得积分10
12秒前
juwish完成签到,获得积分10
12秒前
13秒前
14秒前
15秒前
wgt完成签到,获得积分20
16秒前
同屋如光发布了新的文献求助10
17秒前
gy发布了新的文献求助10
17秒前
17秒前
17秒前
昭谏完成签到,获得积分10
18秒前
巴卫发布了新的文献求助10
19秒前
自然的青筠完成签到,获得积分10
19秒前
缓慢念云发布了新的文献求助10
19秒前
21秒前
23秒前
24秒前
25秒前
25秒前
GISerTina应助111采纳,获得20
25秒前
ljz发布了新的文献求助10
26秒前
怕黑的静蕾应助同屋如光采纳,获得10
26秒前
缓慢念云完成签到,获得积分10
26秒前
海东来应助一一采纳,获得30
26秒前
27秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512158
关于积分的说明 11162133
捐赠科研通 3247021
什么是DOI,文献DOI怎么找? 1793676
邀请新用户注册赠送积分活动 874532
科研通“疑难数据库(出版商)”最低求助积分说明 804421