GSLCDA: An Unsupervised Deep Graph Structure Learning Method for Predicting CircRNA-Disease Association

计算机科学 图形 人工智能 无监督学习 深度学习 机器学习 理论计算机科学
作者
Lei Wang,Zhengwei Li,Zhu‐Hong You,Zhu‐Hong You,Leon Wong
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1742-1751 被引量:5
标识
DOI:10.1109/jbhi.2023.3344714
摘要

Growing studies reveal that Circular RNAs (circRNAs) are broadly engaged in physiological processes of cell proliferation, differentiation, aging, apoptosis, and are closely associated with the pathogenesis of numerous diseases. Clarification of the correlation among diseases and circRNAs is of great clinical importance to provide new therapeutic strategies for complex diseases. However, previous circRNA-disease association prediction methods rely excessively on the graph network, and the model performance is dramatically reduced when noisy connections occur in the graph structure. To address this problem, this paper proposes an unsupervised deep graph structure learning method GSLCDA to predict potential CDAs. Concretely, we first integrate circRNA and disease multi-source data to constitute the CDA heterogeneous network. Then the network topology is learned using the graph structure, and the original graph is enhanced in an unsupervised manner by maximize the inter information of the learned and original graphs to uncover their essential features. Finally, graph space sensitive k-nearest neighbor (KNN) algorithm is employed to search for latent CDAs. In the benchmark dataset, GSLCDA obtained 92.67% accuracy with 0.9279 AUC. GSLCDA also exhibits exceptional performance on independent datasets. Furthermore, 14, 12 and 14 of the top 16 circRNAs with the most points GSLCDA prediction scores were confirmed in the relevant literature in the breast cancer, colorectal cancer and lung cancer case studies, respectively. Such results demonstrated that GSLCDA can validly reveal underlying CDA and offer new perspectives for the diagnosis and therapy of complex human diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lynn发布了新的文献求助10
1秒前
克拉发布了新的文献求助10
1秒前
进击的DOPA发布了新的文献求助10
1秒前
2秒前
sxl完成签到,获得积分10
2秒前
星辰大海应助尛森采纳,获得10
2秒前
JamesPei应助安和桥北采纳,获得10
2秒前
二六完成签到,获得积分10
2秒前
2秒前
尹冰露发布了新的文献求助10
2秒前
哦吼发布了新的文献求助10
3秒前
奋进中的科研小菜鸟完成签到,获得积分20
3秒前
3秒前
852应助bofu采纳,获得10
4秒前
孟丹发布了新的文献求助10
4秒前
彬墩墩发布了新的文献求助30
4秒前
juanlin2011完成签到,获得积分10
5秒前
完美世界应助111采纳,获得10
6秒前
Sherlock完成签到,获得积分10
7秒前
Yolanda发布了新的文献求助30
7秒前
7秒前
沙耶酱完成签到,获得积分10
8秒前
Andy发布了新的文献求助10
8秒前
9秒前
10秒前
9595发布了新的文献求助10
10秒前
11秒前
大方念云完成签到,获得积分10
11秒前
Pp完成签到,获得积分10
11秒前
齐新完成签到,获得积分10
11秒前
HPP123完成签到,获得积分10
12秒前
小马甲应助酷酷的树叶采纳,获得10
12秒前
上官若男应助bofu采纳,获得10
13秒前
灵巧代柔完成签到 ,获得积分10
13秒前
hahada发布了新的文献求助30
14秒前
14秒前
刻苦耳机完成签到,获得积分10
14秒前
14秒前
14秒前
王特工发布了新的文献求助10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303771
求助须知:如何正确求助?哪些是违规求助? 2937960
关于积分的说明 8485658
捐赠科研通 2611928
什么是DOI,文献DOI怎么找? 1426406
科研通“疑难数据库(出版商)”最低求助积分说明 662619
邀请新用户注册赠送积分活动 647170