GSLCDA: An Unsupervised Deep Graph Structure Learning Method for Predicting CircRNA-Disease Association

计算机科学 图形 人工智能 无监督学习 深度学习 机器学习 理论计算机科学
作者
Lei Wang,Zhengwei Li,Zhu‐Hong You,Zhu‐Hong You,Leon Wong
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1742-1751 被引量:5
标识
DOI:10.1109/jbhi.2023.3344714
摘要

Growing studies reveal that Circular RNAs (circRNAs) are broadly engaged in physiological processes of cell proliferation, differentiation, aging, apoptosis, and are closely associated with the pathogenesis of numerous diseases. Clarification of the correlation among diseases and circRNAs is of great clinical importance to provide new therapeutic strategies for complex diseases. However, previous circRNA-disease association prediction methods rely excessively on the graph network, and the model performance is dramatically reduced when noisy connections occur in the graph structure. To address this problem, this paper proposes an unsupervised deep graph structure learning method GSLCDA to predict potential CDAs. Concretely, we first integrate circRNA and disease multi-source data to constitute the CDA heterogeneous network. Then the network topology is learned using the graph structure, and the original graph is enhanced in an unsupervised manner by maximize the inter information of the learned and original graphs to uncover their essential features. Finally, graph space sensitive k-nearest neighbor (KNN) algorithm is employed to search for latent CDAs. In the benchmark dataset, GSLCDA obtained 92.67% accuracy with 0.9279 AUC. GSLCDA also exhibits exceptional performance on independent datasets. Furthermore, 14, 12 and 14 of the top 16 circRNAs with the most points GSLCDA prediction scores were confirmed in the relevant literature in the breast cancer, colorectal cancer and lung cancer case studies, respectively. Such results demonstrated that GSLCDA can validly reveal underlying CDA and offer new perspectives for the diagnosis and therapy of complex human diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
4秒前
今后应助毛123采纳,获得10
5秒前
5秒前
852应助快乐的紫寒采纳,获得10
5秒前
5秒前
橙子完成签到 ,获得积分10
5秒前
桐桐应助舒适从菡采纳,获得10
6秒前
pass发布了新的文献求助10
7秒前
eli完成签到,获得积分0
8秒前
8秒前
心灵美天奇完成签到 ,获得积分10
8秒前
外向的项链完成签到,获得积分20
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
伍岚正完成签到,获得积分20
10秒前
归远发布了新的文献求助50
10秒前
10秒前
fxsg发布了新的文献求助10
11秒前
12秒前
专注的芷发布了新的文献求助10
13秒前
无名应助RuiminXie采纳,获得10
14秒前
hui发布了新的文献求助10
15秒前
Owen应助咖啡头发采纳,获得30
15秒前
aga发布了新的文献求助10
15秒前
生动觅柔完成签到,获得积分10
15秒前
15秒前
上官若男应助pass采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
爱小尹完成签到,获得积分10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
邓佳鑫Alan应助科研通管家采纳,获得10
16秒前
来日昭昭应助科研通管家采纳,获得10
16秒前
桐桐应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
robert3324应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
蓝天应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679900
求助须知:如何正确求助?哪些是违规求助? 4994585
关于积分的说明 15171123
捐赠科研通 4839670
什么是DOI,文献DOI怎么找? 2593541
邀请新用户注册赠送积分活动 1546594
关于科研通互助平台的介绍 1504721