摘要
HomeCirculation ResearchVol. 134, No. 2Platelet Mitochondrial Fusion and Function in Vascular Integrity No AccessEditorialRequest AccessFull TextAboutView Full TextView PDFView EPUBSections ToolsAdd to favoritesDownload citationsTrack citationsPermissions ShareShare onFacebookTwitterLinked InMendeleyReddit Jump toNo AccessEditorialRequest AccessFull TextPlatelet Mitochondrial Fusion and Function in Vascular Integrity Tarun Tyagi, Timur O. Yarovinsky, E. Vincent S. Faustino and John Hwa Tarun TyagiTarun Tyagi Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (T.T., T.O.Y., J.H.), Yale University School of Medicine, New Haven, CT. , Timur O. YarovinskyTimur O. Yarovinsky https://orcid.org/0000-0003-0531-2559 Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (T.T., T.O.Y., J.H.), Yale University School of Medicine, New Haven, CT. , E. Vincent S. FaustinoE. Vincent S. Faustino E. Vincent S. Faustino, MD, MHS, Yale School of Medicine, Section of Critical Care, Department of Pediatrics, 333 Cedar Street, New Haven, CT, 06520, Email E-mail Address: [email protected] https://orcid.org/0000-0001-6155-2691 Section of Critical Care, Department of Pediatrics (E.V.S.F.), Yale University School of Medicine, New Haven, CT. and John HwaJohn Hwa Correspondence to: John Hwa, MD, PhD, Yale School of Medicine, Cardiovascular Research Center, 300 George St, Rm 759H, New Haven, CT 06511, Email E-mail Address: [email protected] https://orcid.org/0000-0001-7366-2628 Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (T.T., T.O.Y., J.H.), Yale University School of Medicine, New Haven, CT. Yale Cooperative Center of Excellence in Hematology (J.H.), Yale University School of Medicine, New Haven, CT. Originally published18 Jan 2024https://doi.org/10.1161/CIRCRESAHA.123.323867Circulation Research. 2024;134:162–164This article is a commentary on the followingMitofusin-2 Regulates Platelet Mitochondria and FunctionFootnotesFor Sources of Funding and Disclosures, see page 164.The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.Correspondence to: John Hwa, MD, PhD, Yale School of Medicine, Cardiovascular Research Center, 300 George St, Rm 759H, New Haven, CT 06511, Email john.hwa@yale.eduE. Vincent S. Faustino, MD, MHS, Yale School of Medicine, Section of Critical Care, Department of Pediatrics, 333 Cedar Street, New Haven, CT, 06520, Email vince.faustino@yale.eduREFERENCES1. Tyagi T, Jain K, Gu SX, Qiu M, Gu VW, Melchinger H, Rinder H, Martin KA, Gardiner EE, Lee AI, et al. A guide to molecular and functional investigations of platelets to bridge basic and clinical sciences.Nat Cardiovasc Res. 2022; 1:223–237. doi: 10.1038/s44161-022-00021-zCrossrefMedlineGoogle Scholar2. Melchinger H, Jain K, Tyagi T, Hwa J. Role of platelet mitochondria: life in a nucleus-free zone.Front Cardiovasc Med. 2019; 6:153. doi: 10.3389/fcvm.2019.00153CrossrefMedlineGoogle Scholar3. Hales KG, Fuller MT. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase.Cell. 1997; 90:121–129. doi: 10.1016/s0092-8674(00)80319-0CrossrefMedlineGoogle Scholar4. Meeusen S, McCaffery JM, Nunnari J. Mitochondrial fusion intermediates revealed in vitro.Science. 2004; 305:1747–1752. doi: 10.1126/science.1100612CrossrefMedlineGoogle Scholar5. Chang JC. Acute respiratory distress syndrome as an organ phenotype of vascular microthrombotic disease: based on hemostatic theory and endothelial molecular pathogenesis.Clin Appl Thromb Hemost. 2019; 25:1076029619887437. doi: 10.1177/1076029619887437CrossrefGoogle Scholar6. Mattie S, Krols M, McBride HM. The enigma of an interconnected mitochondrial reticulum: new insights into mitochondrial fusion.Curr Opin Cell Biol. 2019; 59:159–166. doi: 10.1016/j.ceb.2019.05.004CrossrefMedlineGoogle Scholar7. Detmer SA, Chan DC. Complementation between mouse Mfn1 and Mfn2 protects mitochondrial fusion defects caused by CMT2A disease mutations.J Cell Biol. 2007; 176:405–414. doi: 10.1083/jcb.200611080CrossrefMedlineGoogle Scholar8. Chen H, McCaffery JM, Chan DC. Mitochondrial fusion protects against neurodegeneration in the cerebellum.Cell. 2007; 130:548–562. doi: 10.1016/j.cell.2007.06.026CrossrefMedlineGoogle Scholar9. de Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria.Nature. 2008; 456:605–610. doi: 10.1038/nature07534CrossrefMedlineGoogle Scholar10. Bombelli F, Stojkovic T, Dubourg O, Echaniz-Laguna A, Tardieu S, Larcher K, Amati-Bonneau P, Latour P, Vignal O, Cazeneuve C, et al. Charcot-Marie-Tooth disease type 2A: from typical to rare phenotypic and genotypic features.JAMA Neurol. 2014; 71:1036–1042. doi: 10.1001/jamaneurol.2014.629CrossrefMedlineGoogle Scholar11. Simon LM, Chen ES, Edelstein LC, Kong X, Bhatlekar S, Rigoutsos I, Bray PF, Shaw CA. Integrative multi-omic analysis of human platelet eQTLs reveals alternative start site in mitofusin 2.Am J Hum Genet. 2016; 98:883–897. doi: 10.1016/j.ajhg.2016.03.007CrossrefMedlineGoogle Scholar12. Jacob S, Kosako Y, Bhatlekar S, Denorme F, Benzon H, Moody A, Moody V, Tugolukova E, Hull G, Kishimoto N, et al. Mitofusin 2 (MFN2) preserves mitochondrial integrity in platelets and hemostasis 1 during LPS induced lung injury.Circ Res. 2023; 134:143–161. doi: 10.1161/CIRCRESAHA.123.322914LinkGoogle Scholar13. Baigent C, Blackwell L, Collins R, Emberson J, Godwin J, Peto R, Buring J, Hennekens C, Kearney P, Meade T, et al; Antithrombotic Trialists C. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials.Lancet. 2009; 373:1849–1860. doi: 10.1016/S0140-6736(09)60503-1CrossrefMedlineGoogle Scholar14. Lee SH, Du J, Stitham J, Atteya G, Lee S, Xiang Y, Wang D, Jin Y, Leslie KL, Spollett G, et al. Inducing mitophagy in diabetic platelets protects against severe oxidative stress.EMBO Mol Med. 2016; 8:779–795. doi: 10.15252/emmm.201506046CrossrefMedlineGoogle Scholar15. Jain K, Tyagi T, Du J, Hu X, Patell K, Martin KA, Hwa J. Unfolded protein response differentially modulates the platelet phenotype.Circ Res. 2022; 131:290–307. doi: 10.1161/CIRCRESAHA.121.320530LinkGoogle Scholar16. Gaertner F, Massberg S. Patrolling the vascular borders: platelets in immunity to infection and cancer.Nat Rev Immunol. 2019; 19:747–760. doi: 10.1038/s41577-019-0202-zCrossrefMedlineGoogle Scholar17. Tyagi T, Jain K, Yarovinsky TO, Chiorazzi M, Du J, Castro C, Griffin J, Korde A, Martin KA, Takyar SS, et al. Platelet-derived TLT-1 promotes tumor progression by suppressing CD8+ T cells.J Exp Med. 2023; 220:e20212218. doi: 10.1084/jem.20212218CrossrefMedlineGoogle Scholar eLetters(0)eLetters should relate to an article recently published in the journal and are not a forum for providing unpublished data. Comments are reviewed for appropriate use of tone and language. Comments are not peer-reviewed. Acceptable comments are posted to the journal website only. Comments are not published in an issue and are not indexed in PubMed. Comments should be no longer than 500 words and will only be posted online. References are limited to 10. Authors of the article cited in the comment will be invited to reply, as appropriate.Comments and feedback on AHA/ASA Scientific Statements and Guidelines should be directed to the AHA/ASA Manuscript Oversight Committee via its Correspondence page.Sign In to Submit a Response to This Article Previous Back to top Next FiguresReferencesRelatedDetailsRelated articlesMitofusin-2 Regulates Platelet Mitochondria and FunctionShancy Jacob, et al. Circulation Research. 2024;134:143-161 January 19, 2024Vol 134, Issue 2 Advertisement Article InformationMetrics © 2024 American Heart Association, Inc.https://doi.org/10.1161/CIRCRESAHA.123.323867PMID: 38236952 Originally publishedJanuary 18, 2024 KeywordsEditorialsblood plateletshemostasislipidsmegakaryocytesmitochondriaPDF download Advertisement